ترغب بنشر مسار تعليمي؟ اضغط هنا

First results from the Herschel Gould Belt Survey in Taurus

121   0   0.0 ( 0 )
 نشر من قبل Jason Kirk
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. M. Kirk




اسأل ChatGPT حول البحث

The whole of the Taurus region (a total area of 52 sq. deg.) has been observed by the Herschel SPIRE and PACS instruments at wavelengths of 70, 160, 250, 350 and 500 {mu}m as part of the Herschel Gould Belt Survey. In this paper we present the first results from the part of the Taurus region that includes the Barnard 18 and L1536 clouds. A new source-finding routine, the Cardiff Source-finding AlgoRithm (CSAR), is introduced, which is loosely based on CLUMPFIND, but that also generates a structure tree, or dendrogram, which can be used to interpret hierarchical clump structure in a complex region. Sources were extracted from the data using the hierarchical version of CSAR and plotted on a mass-size diagram. We found a hierarchy of objects with sizes in the range 0.024-2.7 pc. Previous studies showed that gravitationally bound prestellar cores and unbound starless clumps appeared in different places on the mass-size diagram. However, it was unclear whether this was due to a lack of instrumental dynamic range or whether they were actually two distinct populations. The excellent sensitivity of Herschel shows that our sources fill the gap in the mass-size plane between starless and pre-stellar cores, and gives the first clear supporting observational evidence for the theory that unbound clumps and (gravitationally bound) prestellar cores are all part of the same population, and hence presumably part of the same evolutionary sequence (c.f. Simpson et al. 2011).



قيم البحث

اقرأ أيضاً

We present a catalogue of dense cores in a $sim 4^circtimes2^circ$ field of the Taurus star-forming region, inclusive of the L1495 cloud, derived from Herschel SPIRE and PACS observations in the 70 $mu$m, 160 $mu$m, 250 $mu$m, 350 $mu$m, and 500 $mu$ m continuum bands. Estimates of mean dust temperature and total mass are derived using modified blackbody fits to the spectral energy distributions. We detect 525 starless cores of which $sim10$-20% are gravitationally bound and therefore presumably prestellar. Our census of unbound objects is $sim85$% complete for $M>0.015,M_odot$ in low density regions ($A_Vstackrel{<}{_sim}5$ mag), while the bound (prestellar) subset is $sim85$% complete for $M>0.1,M_odot$ overall. The prestellar core mass function (CMF) is consistent with lognormal form, resembling the stellar system initial mass function, as has been reported previously. All of the inferred prestellar cores lie on filamentary structures whose column densities exceed the expected threshold for filamentary collapse, in agreement with previous reports. Unlike the prestellar CMF, the unbound starless CMF is not lognormal, but instead is consistent with a power-law form below $0.3,M_odot$ and shows no evidence for a low-mass turnover. It resembles previously reported mass distributions for CO clumps at low masses ($Mstackrel{<}{_sim}0.3,M_odot$). The volume density PDF, however, is accurately lognormal except at high densities. It is consistent with the effects of self-gravity on magnetized supersonic turbulence. The only significant deviation from lognormality is a high-density tail which can be attributed unambiguously to prestellar cores.
We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the Sub-millimetre Common-User Bolometer Array 2 (SCUBA-2) camera, with its associated polarimeter (POL-2), on the James Clerk Maxwell Telescope (JCMT) in Hawaii. We discuss the surveys aims and objectives. We describe the rationale behind the survey, and the questions which the survey will aim to answer. The most important of these is the role of magnetic fields in the star formation process on the scale of individual filaments and cores in dense regions. We describe the data acquisition and reduction processes for POL-2, demonstrating both repeatability and consistency with previous data. We present a first-look analysis of the first results from the BISTRO survey in the OMC 1 region. We see that the magnetic field lies approximately perpendicular to the famous integral filament in the densest regions of that filament. Furthermore, we see an hour-glass magnetic field morphology extending beyond the densest region of the integral filament into the less-dense surrounding material, and discuss possible causes for this. We also discuss the more complex morphology seen along the Orion Bar region. We examine the morphology of the field along the lower-density north-eastern filament. We find consistency with previous theoretical models that predict magnetic fields lying parallel to low-density, non-self-gravitating filaments, and perpendicular to higher-density, self-gravitating filaments.
As part of a JCMT Legacy Survey of star formation in the Gould Belt, we present early science results for Taurus. CO J=3-2 maps have been secured along the north-west ridge and bowl, collectively known as L 1495, along with deep 13CO and C18O J=3-2 m aps in two sub-regions. With these data we search for molecular outflows, and use the distribution of flows, HH objects and shocked H2 line emission features, together with the population of young stars, protostellar cores and starless condensations to map star formation across this extensive region. In total 21 outflows are identified. It is clear that the bowl is more evolved than the ridge, harbouring a greater population of T Tauri stars and a more diffuse, more turbulent ambient medium. By comparison, the ridge contains a much younger, less widely distributed population of protostars which, in turn, is associated with a greater number of molecular outflows. We estimate the ratio of the numbers of prestellar to protostellar cores in L 1495 to be ~ 1.3-2.3, and of gravitationally unbound starless cores to (gravitationally bound) prestellar cores to be ~ 1. If we take previous estimates of the protostellar lifetime of ~ 5 x 10^5 yrs, this indicates a prestellar lifetime of 9(+/-3) x 10^5 yrs. From the number of outflows we also crudely estimate the star formation efficiency in L 1495, finding it to be compatible with a canonical value of 10-15 %. We note that molecular outflow-driving sources have redder near-IR colours than their HH jet-driving counterparts. We also find that the smaller, denser cores are associated with the more massive outflows, as one might expect if mass build-up in the flow increases with the collapse and contraction of the protostellar envelope.
We present observations of the Cepheus Flare obtained as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Legacy Survey (GBLS) with the SCUBA-2 instrument. We produce a catalogue of sources found by SCUBA-2, and separate these into starles s cores and protostars. We determine masses and densities for each of our sources, using source temperatures determined by the Herschel Gould Belt Survey. We compare the properties of starless cores in four different molecular clouds: L1147/58, L1172/74, L1251 and L1228. We find that the core mass functions for each region typically show shallower-than-Salpeter behaviour. We find that L1147/58 and L1228 have a high ratio of starless cores to Class II protostars, while L1251 and L1174 have a low ratio, consistent with the latter regions being more active sites of current star formation, while the former are forming stars less actively. We determine that, if modelled as thermally-supported Bonnor-Ebert spheres, most of our cores have stable configurations accessible to them. We estimate the external pressures on our cores using archival $^{13}$CO velocity dispersion measurements and find that our cores are typically pressure-confined, rather than gravitationally bound. We perform a virial analysis on our cores, and find that they typically cannot be supported against collapse by internal thermal energy alone, due primarily to the measured external pressures. This suggests that the dominant mode of internal support in starless cores in the Cepheus Flare is either non-thermal motions or internal magnetic fields.
We present an overview of the first data release (DR1) and first-look science from the Green Bank Ammonia Survey (GAS). GAS is a Large Program at the Green Bank Telescope to map all Gould Belt star-forming regions with $A_V gtrsim 7$ mag visible from the northern hemisphere in emission from NH$_3$ and other key molecular tracers. This first release includes the data for four regions in Gould Belt clouds: B18 in Taurus, NGC 1333 in Perseus, L1688 in Ophiuchus, and Orion A North in Orion. We compare the NH$_3$ emission to dust continuum emission from Herschel, and find that the two tracers correspond closely. NH$_3$ is present in over 60% of lines-of-sight with $A_V gtrsim 7$ mag in three of the four DR1 regions, in agreement with expectations from previous observations. The sole exception is B18, where NH$_3$ is detected toward ~ 40% of lines-of-sight with $A_V gtrsim 7$ mag. Moreover, we find that the NH$_3$ emission is generally extended beyond the typical 0.1 pc length scales of dense cores. We produce maps of the gas kinematics, temperature, and NH$_3$ column densities through forward modeling of the hyperfine structure of the NH$_3$ (1,1) and (2,2) lines. We show that the NH$_3$ velocity dispersion, ${sigma}_v$, and gas kinetic temperature, $T_K$, vary systematically between the regions included in this release, with an increase in both the mean value and spread of ${sigma}_v$ and $T_K$ with increasing star formation activity. The data presented in this paper are publicly available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا