ﻻ يوجد ملخص باللغة العربية
We present a catalogue of dense cores in a $sim 4^circtimes2^circ$ field of the Taurus star-forming region, inclusive of the L1495 cloud, derived from Herschel SPIRE and PACS observations in the 70 $mu$m, 160 $mu$m, 250 $mu$m, 350 $mu$m, and 500 $mu$m continuum bands. Estimates of mean dust temperature and total mass are derived using modified blackbody fits to the spectral energy distributions. We detect 525 starless cores of which $sim10$-20% are gravitationally bound and therefore presumably prestellar. Our census of unbound objects is $sim85$% complete for $M>0.015,M_odot$ in low density regions ($A_Vstackrel{<}{_sim}5$ mag), while the bound (prestellar) subset is $sim85$% complete for $M>0.1,M_odot$ overall. The prestellar core mass function (CMF) is consistent with lognormal form, resembling the stellar system initial mass function, as has been reported previously. All of the inferred prestellar cores lie on filamentary structures whose column densities exceed the expected threshold for filamentary collapse, in agreement with previous reports. Unlike the prestellar CMF, the unbound starless CMF is not lognormal, but instead is consistent with a power-law form below $0.3,M_odot$ and shows no evidence for a low-mass turnover. It resembles previously reported mass distributions for CO clumps at low masses ($Mstackrel{<}{_sim}0.3,M_odot$). The volume density PDF, however, is accurately lognormal except at high densities. It is consistent with the effects of self-gravity on magnetized supersonic turbulence. The only significant deviation from lognormality is a high-density tail which can be attributed unambiguously to prestellar cores.
We present and discuss the results of the Herschel Gould Belt survey observations in a ~11 deg^2 area of the Aquila molecular cloud complex at d~260 pc, imaged with the SPIRE/PACS cameras from 70 to 500 micron. We identify a complete sample of starle
We present Herschel SPIRE and PACS maps of the Cepheus Flare clouds L1157, L1172, L1228, L1241, and L1251, observed by the Herschel Gould Belt Survey (HGBS) of nearby star-forming molecular clouds. Through modified blackbody fits to the SPIRE and PAC
The whole of the Taurus region (a total area of 52 sq. deg.) has been observed by the Herschel SPIRE and PACS instruments at wavelengths of 70, 160, 250, 350 and 500 {mu}m as part of the Herschel Gould Belt Survey. In this paper we present the first
(Abridged) In this paper, we present analyses of images taken with the Herschel ESA satellite from 70mu to 500mu. We first constructed column density and dust temperature maps. Next, we identified compact cores in the maps, and characterize the cores
(Abridged) We study the kinematics of the dense gas in the Taurus L1495/B213 filamentary region to investigate the mechanism of core formation. We use observations of N2H+(1-0) and C18O(2-1) carried out with the IRAM 30m telescope. We find that the d