ﻻ يوجد ملخص باللغة العربية
We introduce a family of criteria to detect quantum non-Gaussian states of a harmonic oscillator, that is, quantum states that can not be expressed as a convex mixture of Gaussian states. In particular we prove that, for convex mixtures of Gaussian states, the value of the Wigner function at the origin of phase space is bounded from below by a non-zero positive quantity, which is a function only of the average number of excitations (photons) of the state. As a consequence, if this bound is violated then the quantum state must be quantum non-Gaussian. We show that this criterion can be further generalized by considering additional Gaussian operations on the state under examination. We then apply these criteria to various non-Gaussian states evolving in a noisy Gaussian channel, proving that the bounds are violated for high values of losses, and thus also for states characterized by a positive Wigner function.
We introduce a measure of quantum non-Gaussianity (QNG) for those quantum states not accessible by a mixture of Gaussian states in terms of quantum relative entropy. Specifically, we employ a convex-roof extension using all possible mixed-state decom
No-cloning theorem, a profound fundamental principle of quantum mechanics, also provides a crucial practical basis for secure quantum communication. The security of communication can be ultimately guaranteed if the output fidelity via communication c
In this paper we review the basic results concerning the Wigner transform and then we completely solve the quantum forced harmonic/inverted oscillator in such a framework; eventually, the tunnel effect for the forced inverted oscillator is discussed.
We provide an analysis on non-Markovian quantum evolution based on the spectral properties of dynamical maps. We introduce the dynamical analog of entanglement witness to detect non-Markovianity and we illustrate its behaviour with several instructiv
We consider how to quantify non-Gaussianity for the correlation of a bipartite quantum state by using various measures such as relative entropy and geometric distances. We first show that an intuitive approach, i.e., subtracting the correlation of a