ﻻ يوجد ملخص باللغة العربية
In this paper we review the basic results concerning the Wigner transform and then we completely solve the quantum forced harmonic/inverted oscillator in such a framework; eventually, the tunnel effect for the forced inverted oscillator is discussed.
In this work, we introduce a definition of the Discrete Fourier Transform (DFT) on Euclidean lattices in $R^n$, that generalizes the $n$-th fold DFT of the integer lattice $Z^n$ to arbitrary lattices. This definition is not applicable for every latti
A mapping between operators on the Hilbert space of $N$-dimensional quantum system and the Wigner quasiprobability distributions defined on the symplectic flag manifold is discussed. The Wigner quasiprobability distribution is constructed as a dual p
Quasi-periodically driven quantum parametric oscillators have been the subject of several recent investigations. Here we show that for such oscillators, the instability zones of the mean position and variance (alternatively the mean energy) for a tim
We continue our study of the problem of mixing for a class of PDEs with very degenerate noise. As we established earlier, the uniqueness of stationary measure and its exponential stability in the dual-Lipschitz metric holds under the hypothesis that
This paper develops further the semi-classical theory of an harmonic oscillator acted on by a Gaussian white noise force discussed in (arXiv:1508.02379). Here I add to that theory the effects of Brownian damping (friction). Albeit semi-classical, the