ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral characterization of third-order harmonic generation assisted by two-dimensional plasma grating in air

47   0   0.0 ( 0 )
 نشر من قبل PengJi Ding
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A dramatic spectral modulation of third-order harmonic (TH) emission generated in a near in- frared femtosecond (fs) pulse filamentation, assisted by a two-dimensional plasma grating formed by two pump femtosecond pulses, is experimentally demonstrated when their spatiotemporal overlap is achieved. It is mainly attributed to strong cross-phase modulation induced by the fundamental wave of the probe pulse and two pump ones. The delay dynamic of TH spectra indicates the influence of two retarded nonlinear responses on the TH generation. The dependences of TH generation on the energies of probe and pump pulses, relative field polarization angle are also studied.

قيم البحث

اقرأ أيضاً

We study nonlinear effects in two-dimensional photonic metasurfaces supporting topologically-protected helical edge states at the nanoscale. We observe strong third-harmonic generation mediated by optical nonlinearities boosted by multipolar Mie reso nances of silicon nanoparticles. Variation of the pump-beam wavelength enables independent high-contrast imaging of either bulk modes or spin-momentum-locked edge states. We demonstrate topology-driven tunable localization of the generated harmonic fields and map the pseudospin-dependent unidirectional waveguiding of the edge states bypassing sharp corners. Our observations establish dielectric metasurfaces as a promising platform for the robust generation and transport of photons in topological photonic nanostructures.
144 - Xin Zeng , Shuzhen Cui , Xin Cheng 2021
In second harmonic generation, the phase of the optical field is doubled which has important implication. Here the phase doubling effect is utilized to solve a long-standing challenge in power scaling of single frequency laser. When a (-{pi}/2, {pi}/ 2) binary phase modulation is applied to a single frequency seed laser to broaden the spectrum and suppress the stimulated Brillouin scattering in high power fiber amplifier, the second harmonic of the phase-modulated laser will return to single frequency, because the (-{pi}/2, {pi}/2) modulation is doubled to (-{pi}, {pi}) for the second harmonic. A compression rate as high as 95% is demonstrated in the experiment limited by the electronic bandwidth of the setup, which can be improved with optimized devices.
119 - Tetsuyuki Ochiai 2018
We theoretically investigate the second harmonic generation and photon drag effect induced by an incident plane wave to a doped graphene placed on a two-dimensional diffraction grating. The relevant nonlinear conductivity of the graphene is obtained by a semi-classical treatment with a phenomenological relaxation. The grating acts not only as a plasmon coupler but also as a dispersion modulator of the graphene plasmon. As a result, the second harmonic generation is strongly enhanced by exciting the graphene plasmon polariton of the first- and/or second-harmonic frequencies. The photon drag effect is also strongly enhanced by the excitation of the plasmon at the first-harmonic frequency. The direct current induced by the photon drag effect flows both forward and backward directions to the incident light, depending on the modulated plasmon mode concerned.
Nonlinear metasurfaces offer new paradigm for boosting optical effect beyond limitations of conventional materials. In this work, we present an alternative way to produce pronounced third-harmonic generation (THG) based on nonlinear field resonances rather than linear field enhancement, which is a typical strategy for achieving strong nonlinear response. By designing and studying a nonlinear plasmonic-graphene metasurface at terahertz regime with hybrid guided modes and bound states in the continuum modes, it is found that a THG with a narrow bandwidth can be observed, thanks to the strong resonance between generated weak THG field and these modes. Such strong nonlinear field resonance greatly enhances the photon-photon interactions, thus resulting in a large effective nonlinear coefficient of the whole system. This finding provides new opportunity for studying nonlinear optical metasurfaces.
Silica-based optical fibers are a workhorse of nonlinear optics. They have been used to demonstrate nonlinear phenomena such as solitons and self-phase modulation. Since the introduction of the photonic crystal fiber, they have found many exciting ap plications, such as supercontinuum white light sources and third-harmonic generation, among others. They stand out by their low loss, large interaction length, and the ability to engineer its dispersive properties, which compensate for the small chi(3) nonlinear coefficient. However, they have one fundamental limitation: due to the amorphous nature of silica, they do not exhibit second-order nonlinearity, except for minor contributions from surfaces. Here, we demonstrate significant second-harmonic generation in functionalized optical fibers with a monolayer of highly nonlinear MoS2 deposited on the fiber guiding core. The demonstration is carried out in a 3.5 mm short piece of exposed core fiber, which was functionalized in a scalable process CVD-based process, without a manual transfer step. This approach is scalable and can be generalized to other transition metal dichalcogenides and other waveguide systems. We achieve an enhancement of more than 1000x over a reference sample of equal length. Our simple proof-of-principle demonstration does not rely on either phase matching to fundamental modes, or ordered growth of monolayer crystals, suggesting that pathways for further improvement are within reach. Our results do not just demonstrate a new path towards efficient in-fiber SHG-sources, instead, they establish a platform with a new route to chi(2)-based nonlinear fiber optics, optoelectronics, and photonics platforms, integrated optical architectures, and active fiber networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا