ﻻ يوجد ملخص باللغة العربية
We study nonlinear effects in two-dimensional photonic metasurfaces supporting topologically-protected helical edge states at the nanoscale. We observe strong third-harmonic generation mediated by optical nonlinearities boosted by multipolar Mie resonances of silicon nanoparticles. Variation of the pump-beam wavelength enables independent high-contrast imaging of either bulk modes or spin-momentum-locked edge states. We demonstrate topology-driven tunable localization of the generated harmonic fields and map the pseudospin-dependent unidirectional waveguiding of the edge states bypassing sharp corners. Our observations establish dielectric metasurfaces as a promising platform for the robust generation and transport of photons in topological photonic nanostructures.
Hybrid dielectric metasurfaces have emerged as a promising approach to enhancing near field confinement and thus achieving high optical nonlinearity using low loss dielectrics. Additional flexibility in design and fabrication of hybrid metasurfaces a
Nonlinear metasurfaces offer new paradigm for boosting optical effect beyond limitations of conventional materials. In this work, we present an alternative way to produce pronounced third-harmonic generation (THG) based on nonlinear field resonances
Nonlinear metasurfaces have become prominent tools for controlling and engineering light at the nanoscale. Usually, the polarization of the total generated third harmonic is studied. However, diffraction orders may present different polarizations. He
Second-order nonlinear effects, such as second-harmonic generation, can be strongly enhanced in nanofabricated photonic materials when both fundamental and harmonic frequencies are spatially and temporally confined. Practically designing low-volume a
Nonlinear wavefront control is a crucial requirement in realizing nonlinear optical applications with metasurfaces. Numerous aspects of nonlinear frequency conversion and wavefront control have been demonstrated for plasmonic metasurfaces. However, s