ﻻ يوجد ملخص باللغة العربية
The superconducting-insulator transition is simulated in disordered networks of Josephson junctions with thermally activated Arrhenius-like resistive shunt. By solving the conductance matrix of the network, the transition is reproduced in different experimental conditions by tuning thickness, charge density and disorder degree. In particular, on increasing fluctuations of the parameters entering the Josephson coupling and the Coulomb energy of the junctions, the transition occurs for decreasing values of the critical temperature Tc and increasing values of the activation temperature To. The results of the simulation compare well with recent experiments where the mesoscopic fluctuations of the phase have been suggested as the mechanism underlying the phenomenon of emergent granularity in otherwise homogeneous films. The proposed approach is compared with the results obtained on TiN films and nanopatterned arrays of weak-links, where the superconductor-insulator transition is directly stimulated.
In this communication, we numerically studied disordered quantum transport in a quantum anomalous Hall insulator-superconductor junction based on the effective edge model approach. In particular, we focus on the parameter regime with the free mean pa
Using non-equilibrium Greens functions, we studied numerically the transport properties of a Josephson junction, superconductor-topological insulator-superconductor hybrid system. Our numerical calculation shows first that proximity-induced supercond
We study the spectrum of Andreev bound states and Josephson currents across a junction of $N$ superconducting wires which may have $s$- or $p$-wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transpor
We consider a weakly interacting two-component Fermi gas of dipolar particles (magnetic atoms or polar molecules) in the two-dimensional geometry. The dipole-dipole interaction (together with the short-range interaction at Feshbach resonances) for di
The axion insulator is a higher-order topological insulator protected by inversion symmetry. We show that under quenched disorder respecting inversion symmetry {it on average}, the topology of the axion insulator stays robust, and an intermediate met