ﻻ يوجد ملخص باللغة العربية
A recently proposed scenario for baryogenesis, called post--sphaleron baryogenesis (PSB) is discussed within a class of quark--lepton unified framework based on the gauge symmetry SU(2)_L x SU(2)_R x SU(4)_c realized in the multi--TeV scale. The baryon asymmetry of the universe in this model is produced below the electroweak phase transition temperature after the sphalerons have decoupled from the Hubble expansion. These models embed naturally the seesaw mechanism for neutrino masses, and predict color-sextet scalar particles in the TeV range which may be accessible to the LHC experiments. A necessary consequence of this scenario is the baryon number violating Delta B=2 process of neutron--antineutron (n-bar{n}) oscillations. In this paper we show that the constraints of PSB, when combined with the neutrino oscillation data and restrictions from flavor changing neutral currents mediated by the colored scalars imply an upper limit on the n-bar{n} oscillation time of 5 x 10^{10} sec. regardless of the quark--lepton unification scale. If this scale is relatively low, in the (200-250) TeV range, tau_{n-bar{n}} is predicted to be less than 10^{10} sec., which is accessible to the next generation of proposed experiments.
We consider a model in which baryogenesis occurs at low scale, at a temperature below the electroweak phase transition. This model involves new diquark-type scalars which carry baryon number. Baryon number violation is introduced in the scalar potent
The values of the antineutron-nucleus scattering lengths, and in particular their imaginary parts, are needed to evaluate the feasibility of using neutron mirrors in laboratory experiments to search for neutron-antineutron oscillations. We analyze ex
Assuming the Lorentz and CPT invariances we show that neutron-antineutron oscillation implies breaking of CP along with baryon number violation -- i.e. two of Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator in
Post-sphaleron baryogenesis, a fresh and profound mechanism of baryogenesis accounts for the matter-antimatter asymmetry of our present universe in a framework of Pati-Salam symmetry. We attempt here to embed this mechanism in a non-SUSY SO(10) grand
We point out that if neutron--antineutron oscillation is observed in a free neutron oscillation experiment, it will put an upper limit on the strengths of Lorentz invariance violating (LIV) mass operators for neutrons at the level of $10^{-23}$ GeV o