ﻻ يوجد ملخص باللغة العربية
We describe an algorithm to construct an intrinsic Delaunay triangulation of a smooth closed submanifold of Euclidean space. Using results established in a companion paper on the stability of Delaunay triangulations on $delta$-generic point sets, we establish sampling criteria which ensure that the intrinsic Delaunay complex coincides with the restricted Delaunay complex and also with the recently introduced tangential Delaunay complex. The algorithm generates a point set that meets the required criteria while the tangential complex is being constructed. In this way the computation of geodesic distances is avoided, the runtime is only linearly dependent on the ambient dimension, and the Delaunay complexes are guaranteed to be triangulations of the manifold.
We introduce a parametrized notion of genericity for Delaunay triangulations which, in particular, implies that the Delaunay simplices of $delta$-generic point sets are thick. Equipped with this notion, we study the stability of Delaunay triangulatio
Delaunay flip is an elegant, simple tool to convert a triangulation of a point set to its Delaunay triangulation. The technique has been researched extensively for full dimensional triangulations of point sets. However, an important case of triangula
Delaunay has shown that the Delaunay complex of a finite set of points $P$ of Euclidean space $mathbb{R}^m$ triangulates the convex hull of $P$, provided that $P$ satisfies a mild genericity property. Voronoi diagrams and Delaunay complexes can be de
We study densities of functionals over uniformly bounded triangulations of a Delaunay set of vertices, and prove that the minimum is attained for the Delaunay triangulation if this is the case for finite sets.
We study epidemic outbreaks on random Delaunay triangulations by applying Asynchronous SIR (susceptible-infected-removed) model kinetic Monte Carlo dynamics coupled to lattices extracted from the triangulations. In order to investigate the critical b