ترغب بنشر مسار تعليمي؟ اضغط هنا

QCD thermodynamics of effective models with an improved Polyakov-loop potential

157   0   0.0 ( 0 )
 نشر من قبل Rainer Stiele
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse the role of the quark backreaction on the gauge-field dynamics and its impact on the Polyakov-loop potential. Based on our analysis we construct an improved Polyakov-loop potential that can be used in future model studies. In the present work, we employe this improved potential in a study of a 2+1 flavour Polyakov-quark-meson model and show that the temperature dependence of the order parameters and thermodynamics is closer to full QCD. We discuss the results for QCD thermodynamics and outline briefly the dependence of our results on the critical temperature and the parametrisation of the Polyakov-loop potential as well as the mass of the sigma-meson.

قيم البحث

اقرأ أيضاً

We investigate the quark backreaction on the Polyakov loop and its impact on the thermodynamics of quantum chromodynamics. The dynamics of the gluons generating the Polyakov-loop potential is altered by the presence of dynamical quarks. However, this backreaction of the quarks has not yet been taken into account in Polyakov-loop extended model studies. In the present work, we show within a 2+1 flavour Polyakov-quark-meson model that a quark-improved Polyakov-loop potential leads to a smoother transition between the low-temperature hadronic phase and the high-temperature quark-gluon plasma phase. In particular, we discuss the dependence of our results on the remaining uncertainties that are the critical temperature and the parametrisation of the Polyakov-loop potential as well as the mass of the sigma-meson.
We study genuine finite density effects in QCD-like theories with three-dimensional Polyakov-loop effective theories for heavy quarks. These are derived from the full QCD-like theories by combined strong-coupling and hopping expansions. In particular , we investigate the cold and dense regimes of phase diagrams where we expect to find Bose-Einstein-condensation of diquark baryons or a fermionic first-order liquid-gas transition, depending on the gauge group of the theory. In two-color QCD, for example, we observe evidence of a continuous zero-temperature transition to finite diquark density when the quark chemical potential $mu$ reaches half the diquark mass, i.e. without binding energy. In G$_2$-QCD we observe, in addition to this Silver Blaze onset of diquark density, a second transition in the density towards an exponential increase by roughly $3mu/T$ corresponding to a finite density of G$_2$-nucleons.
Unquenching of the Polyakov-loop potential showed to be an important improvement for the description of the phase structure and thermodynamics of strongly-interacting matter at zero quark chemical potentials with Polyakov-loop extended chiral models. This work constitutes the first application of the quark backreaction on the Polyakov-loop potential at nonzero density. The observation is that it links the chiral and deconfinement phase transition also at small temperatures and large quark chemical potentials. The build up of the surface tension in the Polyakov-loop extended Quark-Meson model is explored by investigating the two and 2+1-flavour Quark-Meson model and analysing the impact of the Polyakov-loop extension. In general, the order of magnitude of the surface tension is given by the chiral phase transition. The coupling of the chiral and deconfinement transition with the unquenched Polyakov-loop potential leads to the fact that the Polyakov-loop contributes at all temperatures.
The Polyakov loop extended Nambu--Jona-Lasinio (PNJL) model with imaginary chemical potential is studied. The model possesses the extended ${mathbb Z}_{3}$ symmetry that QCD does. Quantities invariant under the extended ${mathbb Z}_{3}$ symmetry, suc h as the partition function, the chiral condensate and the modified Polyakov loop, have the Roberge-Weiss (RW) periodicity. The phase diagram of confinement/deconfinement transition derived with the PNJL model is consistent with the RW prediction on it and the results of lattice QCD. The phase diagram of chiral transition is also presented by the PNJL model.
87 - Yun Guo , Qianqian Du 2018
In this paper, we compute the constrained QCD effective potential up to two-loop order with finite quark mass and chemical potential. We present the explicit calculations by using the double line notation and analytical expressions for massless quark s are obtained in terms of the Bernoulli polynomials or Polyakov loops. Our results explicitly show that the constrained QCD effective potential is independent on the gauge fixing parameter. In addition, as compared to the massless case, the constrained QCD effective potential with massive quarks develops a completely new term which is only absent when the background field vanishes. Furthermore, we discuss the relation between the one- and two-loop constrained effective potential. The surprisingly simple proportionality that exists in the pure gauge theories, however, is in general no longer true when fermions are taken into account. On the other hand, for high baryon density $mu_B$ and low temperature $T$, in the massless limit, we do also find a similar proportionality between the one- and two-loop fermionic contributions in the constrained effective potential up to ${cal O}(T/mu_B)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا