ترغب بنشر مسار تعليمي؟ اضغط هنا

Significance of the Casimir force and surface roughness for actuation dynamics of MEMS

93   0   0.0 ( 0 )
 نشر من قبل Wijnand Broer
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the measured optical response and surface roughness topography as inputs, we perform realistic calculations of the combined effect of Casimir and electrostatic forces on the actuation dynamics of micro-electromechanical systems (MEMS). In contrast with the expectations, roughness can influence MEMS dynamics even at distances between bodies significantly larger than the root-mean-square roughness. This effect is associated with statistically rare high asperities that can be locally close to the point of contact. It is found that, even though surface roughness appears to have a detrimental effect on the availability of stable equilibria, it ensures that those equilibria can be reached more easily than in the case of flat surfaces. Hence our findings play a principal role for the stability of microdevices such as vibration sensors, switches, and other related MEM architectures operating at distances below 100 nm.



قيم البحث

اقرأ أيضاً

Up to now there has been no reliable method to calculate the Casimir force when surface roughness becomes comparable with the separation between bodies. Statistical analysis of rough Au films demonstrates rare peaks with heights considerably larger t han the root-mean-square (rms) roughness. These peaks define the minimal distance between rough surfaces and can be described with extreme value statistics. We show that the contributions of high peaks to the force can be calculated independently of each other while the contribution of normal roughness can be evaluated perturbatively beyond the proximity force approximation. The developed method allows a reliable force estimation for short separations. Our model explains the strong hitherto unexplained deviation from the normal Casimir scaling observed experimentally at short separations.
Kelvin probe force microscopy at normal pressure was performed by two different groups on the same Au-coated planar sample used to measure the Casimir interaction in a sphere-plane geometry. The obtained voltage distribution was used to calculate the separation dependence of the electrostatic pressure $P_{rm res}(D)$ in the configuration of the Casimir experiments. In the calculation it was assumed that the potential distribution in the sphere has the same statistical properties as the measured one, and that there are no correlation effects on the potential distributions due to the presence of the other surface. Within this framework, and assuming that the potential distribution does not vary significantly at low pressure, the calculated $P_{rm res}(D)$ does not explain the magnitude or the separation dependence of the difference $Delta P (D)$ between the measured Casimir pressure and the one calculated using a Drude model for the electromagnetic response of Au.
In our previous work [Phys. Rev. Lett. 103, 103602 (2009)], we found that repulsive Casimir forces could be realized by using chiral metamaterials if the chirality is strong enough. In this work, we check four different chiral metamaterial designs (i .e., Twisted-Rosettes, Twisted-Crosswires, Four-U-SRRs, and Conjugate-Swastikas) and find that the designs of Four-U-SRRs and Conjugate-Swastikas are the most promising candidates to realize repulsive Casimir force because of their large chirality and the small ratio of structure length scale to resonance wavelength.
We show that graphene-dielectric multilayers give rise to an unusual tunability of the Casimir-Lifshitz forces, and allow to easily realize completely different regimes within the same structure. Concerning thermal effects, graphene-dielectric multil ayers take advantage from the anomalous features predicted for isolated suspended graphene sheets, even though they are considerably affected by the presence of the dielectric substrate. They can also archive the anomalous non-monotonic thermal metallic behavior by increasing the graphene sheets density and their Fermi energy. In addition to a strong thermal modulation occurring at short separations, in a region where the force is orders of magnitude larger than the one occurring at large distances, the force can be also adjusted by varying the number of graphene layers as well as their Fermi energy levels, allowing for relevant force amplifications which can be tuned, very rapidly and in-situ, by simply applying an electric potential. Our predictions can be relevant for both Casimir experiments and micro/nano electromechanical systems and in new devices for technological applications.
At separations below 100 nm, Casimir-Lifshitz forces strongly influence the actuation dynamics of micro-electromechanical systems (MEMS) in dry vacuum conditions. For a micron size plate oscillating near a surface, which mimics a frequently used setu p in experiments with MEMS, we show that the roughness of the surfaces significantly influences the qualitative dynamics of the oscillator. Via a combination of analytical and numerical methods, it is shown that surface roughness leads to a clear increase of initial conditions associated with chaotic motion, that eventually lead to stiction between the surfaces. Since stiction leads to malfunction of MEMS oscillators, our results are of central interest for the design of microdevices. Moreover, they are of significance for fundamentally motivated experiments performed with MEMS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا