ترغب بنشر مسار تعليمي؟ اضغط هنا

Kelvin probe force microscopy of metallic surfaces used in Casimir force measurements

88   0   0.0 ( 0 )
 نشر من قبل Diego Dalvit
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Kelvin probe force microscopy at normal pressure was performed by two different groups on the same Au-coated planar sample used to measure the Casimir interaction in a sphere-plane geometry. The obtained voltage distribution was used to calculate the separation dependence of the electrostatic pressure $P_{rm res}(D)$ in the configuration of the Casimir experiments. In the calculation it was assumed that the potential distribution in the sphere has the same statistical properties as the measured one, and that there are no correlation effects on the potential distributions due to the presence of the other surface. Within this framework, and assuming that the potential distribution does not vary significantly at low pressure, the calculated $P_{rm res}(D)$ does not explain the magnitude or the separation dependence of the difference $Delta P (D)$ between the measured Casimir pressure and the one calculated using a Drude model for the electromagnetic response of Au.

قيم البحث

اقرأ أيضاً

We review a new implementation of Kelvin probe force microscopy (KPFM) in which the dissipation signal of frequency modulation atomic force microscopy (FM-AFM) is used for dc bias voltage feedback (D-KPFM). The dissipation arises from an oscillating electrostatic force that is coherent with the tip oscillation, which is caused by applying the ac voltage between the tip and sample. The magnitude of the externally induced dissipation is found to be proportional to the effective dc bias voltage, which is the difference between the applied dc voltage and the contact potential difference. Two different implementations of D-KPFM are presented. In the first implementation, the frequency of the applied ac voltage, $f_mathrm{el}$, is chosen to be the same as the tip oscillation ($f_mathrm{el} = f_mathrm{m}$: $1omega$D-KPFM). In the second one, the ac voltage frequency, $f_mathrm{el}$, is chosen to be twice the tip oscillation frequency ($f_mathrm{el}= 2 f_mathrm{m}$: $2omega$D-KPFM). In $1omega$D-KPFM, the dissipation is proportional to the electrostatic force, which enables the use of a small ac voltage amplitude even down to $approx 10$,mV. In $2omega$D-KPFM, the dissipation is proportional to the electrostatic force gradient, which results in the same potential contrast as that obtained by FM-KPFM. D-KPFM features a simple implementation with no lock-in amplifier and faster scanning as it requires no low frequency modulation. The use of a small ac voltage amplitude in $1omega$D-KPFM is of great importance in characterizing of technically relevant materials in which their electrical properties can be disturbed by the applied electric field. $2omega$D-KPFM is useful when more accurate potential measurement is required. The operations in $1omega$ and $2omega$D-KPFM can be switched easily to take advantage of both features at the same location on a sample.
We report a Kelvin probe force microscopy (KPFM) implementation using the dissipation signal of a frequency modulation atomic force microscopy that is capable of detecting the gradient of electrostatic force rather than electrostatic force. It featur es a simple implementation and faster scanning as it requires no low frequency modulation. We show that applying a coherent ac voltage with two times the cantilever oscillation frequency induces the dissipation signal proportional to the electrostatic force gradient which depends on the effective dc bias voltage including the contact potential difference. We demonstrate the KPFM images of a MoS$_2$ flake taken with the present method is in quantitative agreement with that taken with the frequency modulated Kelvin probe force microscopy technique.
We report a new experimental technique for Kelvin probe force microscopy (KPFM) using the dissipation signal of frequency modulation atomic force microscopy for bias voltage feedback. It features a simple implementation and faster scanning as it requ ires no low frequency modulation. The dissipation is caused by the oscillating electrostatic force that is coherent with the tip oscillation, which is induced by a sinusoidally oscillating voltage applied between the tip and sample. We analyzed the effect of the phase of the oscillating force on the frequency shift and dissipation and found that the relative phase of 90$^circ$ that causes only the dissipation is the most appropriate for KPFM measurements. The present technique requires a significantly smaller ac voltage amplitude by virtue of enhanced force detection due to the resonance enhancement and the use of fundamental flexural mode oscillation for electrostatic force detection. This feature will be of great importance in the electrical characterizations of technically relevant materials whose electrical properties are influenced by the externally applied electric field as is the case in semiconductor electronic devices.
While offering unprecedented resolution of atomic and electronic structure, Scanning Probe Microscopy techniques have found greater challenges in providing reliable electrostatic characterization at the same scale. In this work, we introduce Electros tatic Discovery Atomic Force Microscopy, a machine learning based method which provides immediate quantitative maps of the electrostatic potential directly from Atomic Force Microscopy images with functionalized tips. We apply this to characterize the electrostatic properties of a variety of molecular systems and compare directly to reference simulations, demonstrating good agreement. This approach opens the door to reliable atomic scale electrostatic maps on any system with minimal computational overhead.
Using the measured optical response and surface roughness topography as inputs, we perform realistic calculations of the combined effect of Casimir and electrostatic forces on the actuation dynamics of micro-electromechanical systems (MEMS). In contr ast with the expectations, roughness can influence MEMS dynamics even at distances between bodies significantly larger than the root-mean-square roughness. This effect is associated with statistically rare high asperities that can be locally close to the point of contact. It is found that, even though surface roughness appears to have a detrimental effect on the availability of stable equilibria, it ensures that those equilibria can be reached more easily than in the case of flat surfaces. Hence our findings play a principal role for the stability of microdevices such as vibration sensors, switches, and other related MEM architectures operating at distances below 100 nm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا