ﻻ يوجد ملخص باللغة العربية
Mechanical characterization of brain tissue has been investigated extensively by various research groups over the past fifty years. These properties are particularly important for modelling Traumatic Brain Injury (TBI). In this research, we present the design and calibration of a High Rate Tension Device (HRTD) capable of performing tests up to a maximum strain rate of 90/s. We use experimental and numerical methods to investigate the effects of inhomogeneous deformation of porcine brain tissue during tension at different specimen thicknesses (4.0-14.0 mm), by performing tension tests at a strain rate of 30/s. One-term Ogden material parameters (mu = 4395.0 Pa, alpha = -2.8) were derived by performing an inverse finite element analysis to model all experimental data. A similar procedure was adopted to determine Youngs modulus (E= 11200 Pa) of the linear elastic regime. Based on this analysis, brain specimens of aspect ratio (diameter/thickness) S < 1.0 are required to minimise the effects of inhomogeneous deformation during tension tests.
During the first years of life, the human brain undergoes dynamic spatially-heterogeneous changes, involving differentiation of neuronal types, dendritic arborization, axonal ingrowth, outgrowth and retraction, synaptogenesis, and myelination. To bet
Identification of white matter fiber tracts of the brain is crucial for delineating the tumor border during neurosurgery. A custom-built Mueller polarimeter was used in reflection configuration for the wide-field imaging of thick section of fixed hum
During contraction the energy of muscle tissue increases due to energy from the hydrolysis of ATP. This energy is distributed across the tissue as strain-energy potentials in the contractile elements, strain-energy potential from the 3D deformation o
As bone and air produce weak signals with conventional MR sequences, segmentation of these tissues particularly difficult in MRI. We propose to integrate patch-based anatomical signatures and an auto-context model into a machine learning framework to
Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. In mammography, measurement of breast density, dose estimation, and differentiation between cysts and solid tumours are example applications requiri