ﻻ يوجد ملخص باللغة العربية
During the first years of life, the human brain undergoes dynamic spatially-heterogeneous changes, involving differentiation of neuronal types, dendritic arborization, axonal ingrowth, outgrowth and retraction, synaptogenesis, and myelination. To better quantify these changes, this article presents a method for probing tissue microarchitecture by characterizing water diffusion in a spectrum of length scales, factoring out the effects of intra-voxel orientation heterogeneity. Our method is based on the spherical means of the diffusion signal, computed over gradient directions for a fixed set of diffusion weightings (i.e., b-values). We decompose the spherical mean series at each voxel into a spherical mean spectrum (SMS), which essentially encodes the fractions of spin packets undergoing fine- to coarse-scale diffusion processes, characterizing hindered and restricted diffusion stemming respectively from extra- and intra-neurite water compartments. From the SMS, multiple orientation distribution invariant indices can be computed, allowing for example the quantification of neurite density, microscopic fractional anisotropy ($mu$FA), per-axon axial/radial diffusivity, and free/restricted isotropic diffusivity. We show maps of these indices for baby brains, demonstrating that microscopic tissue features can be extracted from the developing brain for greater sensitivity and specificity to development related changes. Also, we demonstrate that our method, called spherical mean spectrum imaging (SMSI), is fast, accurate, and can overcome the biases associated with other state-of-the-art microstructure models.
Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. In mammography, measurement of breast density, dose estimation, and differentiation between cysts and solid tumours are example applications requiri
As bone and air produce weak signals with conventional MR sequences, segmentation of these tissues particularly difficult in MRI. We propose to integrate patch-based anatomical signatures and an auto-context model into a machine learning framework to
Mechanical characterization of brain tissue has been investigated extensively by various research groups over the past fifty years. These properties are particularly important for modelling Traumatic Brain Injury (TBI). In this research, we present t
Label-free vibrational imaging by stimulated Raman scattering (SRS) provides unprecedented insight into real-time chemical distributions in living systems. Specifically, SRS in the fingerprint region can resolve multiple chemicals in a complex bio-en
Purpose: To improve image quality and accelerate the acquisition of 3D MRF. Methods: Building on the multi-axis spiral-projection MRF technique, a subspace reconstruction with locally low rank (LLR) constraint and a modified spiral-projection spatiot