ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Tissue Microarchitecture of the Baby Brain via Spherical Mean Spectrum Imaging

153   0   0.0 ( 0 )
 نشر من قبل Khoi Huynh
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

During the first years of life, the human brain undergoes dynamic spatially-heterogeneous changes, involving differentiation of neuronal types, dendritic arborization, axonal ingrowth, outgrowth and retraction, synaptogenesis, and myelination. To better quantify these changes, this article presents a method for probing tissue microarchitecture by characterizing water diffusion in a spectrum of length scales, factoring out the effects of intra-voxel orientation heterogeneity. Our method is based on the spherical means of the diffusion signal, computed over gradient directions for a fixed set of diffusion weightings (i.e., b-values). We decompose the spherical mean series at each voxel into a spherical mean spectrum (SMS), which essentially encodes the fractions of spin packets undergoing fine- to coarse-scale diffusion processes, characterizing hindered and restricted diffusion stemming respectively from extra- and intra-neurite water compartments. From the SMS, multiple orientation distribution invariant indices can be computed, allowing for example the quantification of neurite density, microscopic fractional anisotropy ($mu$FA), per-axon axial/radial diffusivity, and free/restricted isotropic diffusivity. We show maps of these indices for baby brains, demonstrating that microscopic tissue features can be extracted from the developing brain for greater sensitivity and specificity to development related changes. Also, we demonstrate that our method, called spherical mean spectrum imaging (SMSI), is fast, accurate, and can overcome the biases associated with other state-of-the-art microstructure models.



قيم البحث

اقرأ أيضاً

Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. In mammography, measurement of breast density, dose estimation, and differentiation between cysts and solid tumours are example applications requiri ng accurate data on tissue attenuation. Published attenuation data are, however, sparse and cover a relatively wide range. To supplement available data we have previously measured the attenuation of cyst fluid and solid lesions using photon-counting spectral mammography. The present study aims to measure the attenuation of normal adipose and glandular tissue, and to measure the effect of formalin fixation, a major uncertainty in published data. A total of 27 tumour specimens, seven fibro-glandular tissue specimens, and 15 adipose tissue specimens were included. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, from which x-ray attenuation as a function of energy can be derived. The spread in attenuation between samples was relatively large, partly because of natural variation. The variation of malignant and glandular tissue was similar, whereas that of adipose tissue was lower. Formalin fixation slightly altered the attenuation of malignant and glandular tissue, whereas the attenuation of adipose tissue was not significantly affected. The difference in attenuation between fresh tumour tissue and cyst fluid was smaller than has previously been measured for fixed tissue, but the difference was still significant and discrimination of these two tissue types is still possible. The difference between glandular and malignant tissue was close-to significant; it is reasonable to expect a significant difference with a larger set of samples. [cropped]
90 - Xue Dong , Yang Lei , Sibo Tian 2019
As bone and air produce weak signals with conventional MR sequences, segmentation of these tissues particularly difficult in MRI. We propose to integrate patch-based anatomical signatures and an auto-context model into a machine learning framework to iteratively segment MRI into air, bone and soft tissue. The proposed semantic classification random forest (SCRF) method consists of a training stage and a segmentation stage. During training stage, patch-based anatomical features were extracted from registered MRI-CT training images, and the most informative features were identified to train a series of classification forests with auto-context model. During segmentation stage, we extracted selected features from MRI and fed them into the well-trained forests for MRI segmentation. The DSC for air, bone and soft tissue obtained with proposed SCRF were 0.976, 0.819 and 0.932, compared to 0.916, 0.673 and 0.830 with RF, 0.942, 0.791 and 0.917 with U-Net. SCRF also demonstrated superior segmentation performances for sensitivity and specificity over RF and U-Net for all three structure types. The proposed segmentation technique could be a useful tool to segment bone, air and soft tissue, and have the potential to be applied to attenuation correction of PET/MRI system, MRI-only radiation treatment planning and MR-guided focused ultrasound surgery.
Mechanical characterization of brain tissue has been investigated extensively by various research groups over the past fifty years. These properties are particularly important for modelling Traumatic Brain Injury (TBI). In this research, we present t he design and calibration of a High Rate Tension Device (HRTD) capable of performing tests up to a maximum strain rate of 90/s. We use experimental and numerical methods to investigate the effects of inhomogeneous deformation of porcine brain tissue during tension at different specimen thicknesses (4.0-14.0 mm), by performing tension tests at a strain rate of 30/s. One-term Ogden material parameters (mu = 4395.0 Pa, alpha = -2.8) were derived by performing an inverse finite element analysis to model all experimental data. A similar procedure was adopted to determine Youngs modulus (E= 11200 Pa) of the linear elastic regime. Based on this analysis, brain specimens of aspect ratio (diameter/thickness) S < 1.0 are required to minimise the effects of inhomogeneous deformation during tension tests.
Label-free vibrational imaging by stimulated Raman scattering (SRS) provides unprecedented insight into real-time chemical distributions in living systems. Specifically, SRS in the fingerprint region can resolve multiple chemicals in a complex bio-en vironment using specific and well-separated Raman signatures. Yet, fingerprint SRS imaging with microsecond spectral acquisition has not been achieved due to the small fingerprint Raman cross-sections and the lack of ultrafast acquisition scheme with high spectral resolution and high fidelity. Here, we report a fingerprint spectroscopic SRS platform that acquires a distortion-free SRS spectrum with 10 cm-1 spectral resolution in 20 microseconds using a lab-built ultrafast delay-line tuning system. Meanwhile, we significantly improve the signal-to-noise ratio by employing a spatial-spectral residual learning network, reaching comparable quality to images taken with two orders of magnitude longer pixel dwell times. Collectively, our system achieves reliable fingerprint spectroscopic SRS with microsecond spectral acquisition speed, enabling imaging and tracking of multiple biomolecules in samples ranging from a live single microbe to a tissue slice, which was not previously possible with SRS imaging in the highly congested carbon-hydrogen region. To show the broad utility of the approach, we have demonstrated high-speed compositional imaging of lipid metabolism in living pancreatic cancer Mia PaCa-2 cells. We then performed high-resolution mapping of cholesterol, fatty acid, and protein in the mouse whole brain. Finally, we mapped the production of two biofuels in microbial samples by harnessing the superior spectral and temporal resolutions of our system.
Purpose: To improve image quality and accelerate the acquisition of 3D MRF. Methods: Building on the multi-axis spiral-projection MRF technique, a subspace reconstruction with locally low rank (LLR) constraint and a modified spiral-projection spatiot emporal encoding scheme termed tiny-golden-angle-shuffling (TGAS) were implemented for rapid whole-brain high-resolution quantitative mapping. The LLR regularization parameter and the number of subspace bases were tuned using retrospective in-vivo data and simulated examinations, respectively. B0 inhomogeneity correction using multi-frequency interpolation was incorporated into the subspace reconstruction to further improve the image quality by mitigating blurring caused by off-resonance effect. Results: The proposed MRF acquisition and reconstruction framework can produce provide high quality 1-mm isotropic whole-brain quantitative maps in a total acquisition time of 1 minute 55 seconds, with higher-quality results than ones obtained from the previous approach in 6 minutes. The comparison of quantitative results indicates that neither the subspace reconstruction nor the TGAS trajectory induce bias for T1 and T2 mapping. High quality whole-brain MRF data were also obtained at 0.66-mm isotropic resolution in 4 minutes using the proposed technique, where the increased resolution was shown to improve visualization of subtle brain structures. Conclusion: The proposed TGAS-SPI-MRF with optimized spiral-projection trajectory and subspace reconstruction can enable high-resolution quantitative mapping with faster acquisition speed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا