ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar Superfluids

171   0   0.0 ( 0 )
 نشر من قبل Dany Page
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Dany Page




اسأل ChatGPT حول البحث

Neutron stars provide a fertile environment for exploring superfluidity under extreme conditions. It is not surprising that Cooper pairing occurs in dense matter since nucleon pairing is observed in nuclei as energy differences between even-even and odd-even nuclei. Since superfluids and superconductors in neutron stars profoundly affect neutrino emissivities and specific heats, their presence can be observed in the thermal evolution of neutron stars. An ever-growing number of cooling neutron stars, now amounting to 13 thermal sources, and several additional objects from which upper limits to temperatures can be ascertained, can now be used to discriminate among theoretical scenarios and even to dramatically restrict properties of nucleon pairing at high densities. In addition, observations of pulsars, including their spin-downs and glitch histories, additionally support the conjecture that superfluidity and superconductivity are ubiquitous within, and important to our understanding of, neutron stars.



قيم البحث

اقرأ أيضاً

129 - Boris Krippa 2006
The application of the nonperturbative renormalisation group approach to a system with two fermion species is studied. Assuming a simple ansatz for the effective action with effective bosons, describing pairing effects we derive a set of approximate flow equations for the effective coupling including boson and fermionic fluctuations. The case of two fermions with different masses but coinciding Fermi surfaces is considered. The phase transition to a phase with broken symmetry is found at a critical value of the running scale. The large mass difference is found to disfavour the formation of pairs. The mean-field results are recovered if the effects of boson loops are omitted. While the boson fluctuation effects were found to be negligible for large values of $p_{F} a$ they become increasingly important with decreasing $p_{F} a$ thus making the mean field description less accurate.
New techniques, both for generating and detecting turbulence in the helium superfluids 3He-B and 4He, have recently given insight in how turbulence is started, what the dissipation mechanisms are, and how turbulence decays when it appears as a transi ent state or when externally applied turbulent pumping is switched off. Important simplifications are obtained by using 3He-B as working fluid, where the highly viscous normal component is practically always in a state of laminar flow, or by cooling 4He to low temperatures where the normal fraction becomes vanishingly small. We describe recent studies from the low temperature regime, where mutual friction becomes small or practically vanishes. This allows us to elucidate the mechanisms at work in quantum turbulence on approaching the zero temperature limit.
Superfluid heliums low-loss dielectric properties, excellent thermal conductivity, and unique collective excitations make it an attractive candidate to incorporate into superconducting qubit systems. We controllably immerse a three-dimensional superc onducting transmon qubit in superfluid helium-4 and measure the spectroscopic and coherence properties of the system. We find that the cavity, the qubit, and their coupling are all modified by the superfluid, which we analyze within the framework of circuit quantum electrodynamics (cQED). At at temperatures relevant to quantum computing experiments, the energy relaxation time of the qubit is not significantly changed by the presence of the superfluid, while the pure dephasing time modestly increases, which we attribute to improved thermalization of the microwave environment via the superfluid.
The interior of a neutron star is expected to be occupied by a neutron $^3P_2$ superfluid, which is the condensate of spin-triplet $p$-wave Cooper pairs of neutrons with total angular momentum $J=2$. Here we investigate the thermodynamic stability of $^3P_2$ superfluids in a neutron-star interior under a strong magnetic field. Using the theory incorporating the finite size correction of neutron Fermi surface, we show that the spin-polarized phases of $^3P_2$ superfluids, the magnetized biaxial nematic phase and the ferromagnetic phase, appear in high temperatures and high magnetic fields. These phases were missed in the previous studies using the quasiclassical approximation in which dispersions of neutrons are linearized around the Fermi surface. In particular, the ferromagnetic phase, which is the condensation of Cooper-paired neutrons with fully polarized spins, appears between the normal phase and the biaxial nematic phase and enlarge the thermodynamic stability of $^3P_2$ superfluids under strong magnetic fields. Furthermore, we present the augmented Ginzburg-Landau theory that incorporates the thermodynamic stability of spin-polarized $^3P_2$ superfluid phases.
A superconductor of paired protons is thought to form in the core of neutron stars soon after their birth. Minimum energy conditions suggest magnetic flux is expelled from the superconducting region due to the Meissner effect, such that the neutron s tar core is largely devoid of magnetic fields for some nuclear equation of state and proton pairing models. We show via neutron star cooling simulations that the superconducting region expands faster than flux is expected to be expelled because cooling timescales are much shorter than timescales of magnetic field diffusion. Thus magnetic fields remain in the bulk of the neutron star core for at least 10^6-10^7 yr. We estimate the size of flux free regions at 10^7 yr to be <~ 100 m for a magnetic field of 10^11 G and possibly smaller for stronger field strengths. For proton pairing models that are narrow, magnetic flux may be completely expelled from a thin shell of approximately the above size after 10^5 yr. This shell may insulate lower conductivity outer layers, where magnetic fields can diffuse and decay faster, from fields maintained in the highly conducting deep core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا