ﻻ يوجد ملخص باللغة العربية
We consider scalar and spinorial perturbations on a background described by a $z=3$ three-dimensional Lifshitz black hole. We obtained the corresponding quasinormal modes which perfectly agree with the analytical result for the quasinormal frequency in the scalar case. The numerical results for the spinorial perturbations reinforce our conclusion on the stability of the model under these perturbations. We also calculate the area spectrum, which prove to be equally spaced, as an application of our results.
In this paper we investigate quasinormal modes (QNM) for a scalar field around a noncommutative Schwarzschild black hole. We verify the effect of noncommutativity on quasinormal frequencies by applying two procedures widely used in the literature. Th
Holography relates the quasinormal modes frequencies of AdS black holes to the pole structure of the dual field theory propagator. These modes thus provide the timescale for the approach to thermal equilibrium in the CFT. Here, we study how such pole
We give a new derivation of the quasinormal frequencies of Schwarzschild black holes in d>=4 and Reissner-Nordstrom black holes in d=4, in the limit of infinite damping. For Schwarzschild in d>=4 we find that the asymptotic real part is T_Hawking.log
Motivated by the recent interest in the study of the spacetimes that are asymptotically Lifshitz and in order to extend some previous results, we calculate exactly the quasinormal frequencies of the electromagnetic field in a D-dimensional asymptotic
Four-dimensional $mathcal{N}=4$ supersymmetric Yang-Mills theory, at a point on the Coulomb branch where $SU(N)$ gauge symmetry is spontaneously broken to $SU(N-1)times U(1)$, admits BPS solitons describing a spherical shell of electric and/or magnet