ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic black hole quasinormal frequencies

75   0   0.0 ( 0 )
 نشر من قبل Andrew Neitzke
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a new derivation of the quasinormal frequencies of Schwarzschild black holes in d>=4 and Reissner-Nordstrom black holes in d=4, in the limit of infinite damping. For Schwarzschild in d>=4 we find that the asymptotic real part is T_Hawking.log(3) for scalar perturbations and for some gravitational perturbations; this confirms a result previously obtained by other means in the case d=4. For Reissner-Nordstrom in d=4 we find a specific generally aperiodic behavior for the quasinormal frequencies, both for scalar perturbations and for electromagnetic-gravitational perturbations. The formulae are obtained by studying the monodromy of the perturbation analytically continued to the complex plane; the analysis depends essentially on the behavior of the potential in the unphysical region near the black hole singularity.

قيم البحث

اقرأ أيضاً

Holography relates the quasinormal modes frequencies of AdS black holes to the pole structure of the dual field theory propagator. These modes thus provide the timescale for the approach to thermal equilibrium in the CFT. Here, we study how such pole structure and, in particular, the time to equilibrium can get modified in the presence of a black hole hair. More precisely, we consider in AdS a set of relaxed boundary conditions that allow for a low decaying graviton mode near the boundary, which triggers an additional degree of freedom. We solve the scalar field response on such background analytically and non-perturbatively in the hair parameter, and we obtain how the pole structure gets affected by the presence of a black hole hair, relative to that of the usual AdS black hole geometry. The setup we consider is a massive 3D gravity theory, which admits a one-parameter family deformation of BTZ solution and enables us to solve the problem analytically. The theory also admits an AdS$_3$ soliton which gives a family of vacua that can be constructed from the hairy black hole by means of a double Wick rotation. The spectrum of normal modes on the latter geometry can also be solved analytically; we study its properties in relation to those of the AdS$_3$ vacuum.
In this paper we investigate quasinormal modes (QNM) for a scalar field around a noncommutative Schwarzschild black hole. We verify the effect of noncommutativity on quasinormal frequencies by applying two procedures widely used in the literature. Th e first is the Wentzel-Kramers-Brillouin (WKB) approximation up to sixth order. In the second case we use the continuous fraction method developed by Leaver. We find that the quasinormal frequencies obtained for nonzero noncommutative parameter resemble those of the Reissner-Nordstr{o}m geometry. Besides, we also show that due to noncommutativity, the shadow radius is reduced when we increase the noncommutative parameter. In addition, we find that the shadow radius is nonzero even at the zero mass limit for finite noncommutative parameter.
We consider scalar and spinorial perturbations on a background described by a $z=3$ three-dimensional Lifshitz black hole. We obtained the corresponding quasinormal modes which perfectly agree with the analytical result for the quasinormal frequency in the scalar case. The numerical results for the spinorial perturbations reinforce our conclusion on the stability of the model under these perturbations. We also calculate the area spectrum, which prove to be equally spaced, as an application of our results.
The signal-to-noise ratio (SNR) for black hole quasinormal mode sources of low-frequency gravitational waves is estimated using a Monte Carlo approach that replaces the all-sky average approximation. We consider an eleven dimensional parameter space that includes both source and detector parameters. We find that in the black-hole mass range $Msim 4$-$7times 10^6M_{odot}$ the SNR is significantly higher than the SNR for the all-sky average case, as a result of the variation of the spin parameter of the sources. This increased SNR may translate to a higher event rate for the Laser Interferometer Space Antenna (LISA). We also study the directional dependence of the SNR, show at which directions in the sky LISA will have greater response, and identify the LISA blind spots.
198 - Daiske Yoshida , Jiro Soda 2019
We study the quasinormal modes of $p$-form fields in spherical black holes in $D$-dimensions. Using the spherical symmetry of the black holes and gauge symmetry, we show the $p$-form field can be expressed in terms of the coexact $p$-form and the coe xact $(p-1)$-form on the sphere $S^{D-2}$. These variables allow us to find the master equations. By utilizing the S-deformation method, we explicitly show the stability of $p$-form fields in the spherical black hole spacetime. Moreover, using the WKB approximation, we calculate the quasinormal modes of the $p$-form fields in $D(leq10)$-dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا