ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced off-center stellar tidal disruptions by supermassive black holes in merging galaxies

351   0   0.0 ( 0 )
 نشر من قبل Fukun Liu
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F.K. Liu




اسأل ChatGPT حول البحث

Off-center stellar tidal disruption flares have been suggested to be a powerful probe of recoiling supermassive black holes (SMBHs) out of galactic centers due to anisotropic gravitational wave radiations. However, off-center tidal flares can also be produced by SMBHs in merging galaxies. In this paper, we computed the tidal flare rates by dual SMBHs in two merging galaxies before the SMBHs become self-gravitationally bounded. We employ an analytical model to calculate the tidal loss-cone feeding rates for both SMBHs, taking into account two-body relaxation of stars, tidal perturbations by the companion galaxy, and chaotic stellar orbits in triaxial gravitational potential. We show that for typical SMBHs with mass 10^7 M_sun, the loss-cone feeding rates are enhanced by mergers up to Gamma ~ 10^{-2} yr^{-1}, about two order of magnitude higher than those by single SMBHs in isolated galaxies and about four orders of magnitude higher than those by recoiling SMBHs. The enhancements are mainly due to tidal perturbations by the companion galaxy. We suggest that off-center tidal flares are overwhelmed by those from merging galaxies, making the identification of recoiling SMBHs challenging. Based on the calculated rates, we estimate the relative contributions of tidal flare events by single, binary, and dual SMBH systems during cosmic time. Our calculations show that the off-center tidal disruption flares by un-bound SMBHs in merging galaxies contribute a fraction comparable to that by single SMBHs in isolated galaxies. We conclude that off-center tidal disruptions are powerful tracers of the merging history of galaxies and SMBHs.



قيم البحث

اقرأ أيضاً

163 - Ilya Mandel , Alison Farmer 2018
The LIGO and Virgo detectors have recently directly observed gravitational waves from several mergers of pairs of stellar-mass black holes, as well as from one merging pair of neutron stars. These observations raise the hope that compact object merge rs could be used as a probe of stellar and binary evolution, and perhaps of stellar dynamics. This colloquium-style article summarizes the existing observations, describes theoretical predictions for formation channels of merging stellar-mass black-hole binaries along with their rates and observable properties, and presents some of the prospects for gravitational-wave astronomy.
Stars can be consumed (either tidally disrupted or swallowed whole) by massive black holes (MBHs) at galactic centers when they move into the vicinity of the MBHs. In this study, we investigate the rates of stellar consumption by central MBHs and the ir cosmic distributions, including the effects of triaxial galaxy shapes in enhancing the reservoir of low-angular-momentum stars and incorporating realistic galaxy distributions. We find that the enhancement in the stellar consumption rates due to triaxial galaxy shapes can be significant, by a factor of ~3 for MBH mass $M_{rm BH}sim10^5$-$10^6$Msun and up to more than one order of magnitude for $M_{rm BH}gtrsim10^8$Msun. Only for $M_{rm BH}lesssim10^7$Msun are the stellar consumption rates significantly higher in galaxies with steeper inner surface brightness profiles. The average (per galaxy) stellar consumption rates correlate with central MBH masses positively for $M_{rm BH}gtrsim10^7$Msun and negatively for $M_{rm BH}lesssim10^7$Msun. The volumetric stellar tidal disruption rates are ~$3times10^{-5}$/yr/Mpc$^3$ for MBHs in the mass range of $10^5$-$10^8$Msun at z=0; and the volumetric stellar consumption rates by MBHs with higher masses are ~$10^{-6}$/yr/Mpc$^3$, which can be the stellar tidal disruption rate if the high-mass BHs are extremely spinning Kerr BHs or the rate of being swallowed if those BHs are Schwarzschild ones. The volumetric stellar consumption rates decrease with increasing redshift, and the decrease is relatively mild for $M_{rm BH}sim10^5$-$10^7$Msun and stronger for higher $M_{rm BH}$. Most of the stellar tidal disruption events (TDEs) at z=0 occur in galaxies with mass $M_{rm gal}lesssim10^{11}$Msun, and about 1%-2% of the TDEs can occur in high-mass galaxies with $M_{rm gal}gtrsim10^{11}$Msun.
In spherical galaxies, binary supermassive black holes (SMBHs) have difficulty reaching sub-parsec separations due to depletion of stars on orbits that intersect the massive binary - the final-parsec problem. Galaxies that form via major mergers are substantially nonspherical, and it has been argued that the centrophilic orbits in triaxial galaxies might provide stars to the massive binary at a high enough rate to avoid stalling. Here we test that idea by carrying out fully self-consistent merger simulations of galaxies containing central SMBHs. We find hardening rates of the massive binaries that are indeed much higher than in spherical models, and essentially independent of the number of particles used in the simulations. Binary eccentricities remain high throughout the simulations. Our results constitute a fully stellar-dynamical solution to the final-parsec problem and imply a potentially high rate of events for low-frequency gravitational wave detectors like LISA.
112 - James Guillochon 2015
The kinetic energy of a star in orbit about a supermassive black hole is a significant fraction of its rest mass energy when its periapse is comparable to its tidal radius. Upon its destruction, a fraction of this energy is extracted and injected int o the stellar debris, half of which becomes unbound from the black hole, with the fastest material moving at $sim 0.03 c$. In this paper, we present a formalism for determining the fate of these unbound debris streams (UDSs) as they depart from the black hole and interact with the surrounding gas. As the density and velocity varies along the length of a UDS, we find that hydrodynamical drag quickly shapes UDSs into loop-like structures, with the densest portions of the streams leading portions of lower density. As UDSs travel outwards, their drag against the ISM increases quadratically with distance, which causes UDSs to deposit their momentum and energy into the ambient medium before the surrounding shocked ISM has a chance to cool. This sudden injection of $sim 10^{50}$ erg into the ambient medium generates a Sedov-like unbound debris remnant (UDR) that mimics supernova remnants (SNRs) in energetics and appearance, accelerates particles which will produce cosmic rays and synchrotron emission, and provides momentum feedback into the molecular clouds surrounding a black hole. We estimate that a few of these UDRs might be present within a couple degrees of the Galactic Center masquerading as SNRs, and that the UDR scenario is a plausible explanation for Sgr A East.
We analyze the early growth stage of direct-collapse black holes (DCBHs) with $sim 10^{5} rm M_odot$, which are formed by collapse of supermassive stars in atomic-cooling halos at $z gtrsim 10$. A nuclear accretion disk around a newborn DCBH is grav itationally unstable and fragments into clumps with a few $10 rm M_odot$ at $sim 0.01-0.1 rm pc$ from the center. Such clumps evolve into massive population III stars with a few $10-100 rm M_odot$ via successive gas accretion and a nuclear star cluster is formed. Radiative and mechanical feedback from an inner slim disk and the star cluster will significantly reduce the gas accretion rate onto the DCBH within $sim 10^6 rm yr$. Some of the nuclear stars can be scattered onto the loss cone orbits also within $lesssim 10^6 rm yr$ and tidally disrupted by the central DCBH. The jet luminosity powered by such tidal disruption events can be $L_{rm j} gtrsim 10^{50} rm erg s^{-1}$. The prompt emission will be observed in X-ray bands with a peak duration of $delta t_{rm obs} sim 10^{5-6} (1+z) rm s$ followed by a tail $propto t_{rm obs}^{-5/3}$, which can be detectable by Swift BAT and eROSITA even from $z sim 20$. Follow-up observations of the radio afterglows with, e.g., eVLA and the host halos with JWST could probe the earliest AGN feedback from DCBHs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا