ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Merger of Binary Supermassive Black Holes in Merging Galaxies

120   0   0.0 ( 0 )
 نشر من قبل David Merritt
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In spherical galaxies, binary supermassive black holes (SMBHs) have difficulty reaching sub-parsec separations due to depletion of stars on orbits that intersect the massive binary - the final-parsec problem. Galaxies that form via major mergers are substantially nonspherical, and it has been argued that the centrophilic orbits in triaxial galaxies might provide stars to the massive binary at a high enough rate to avoid stalling. Here we test that idea by carrying out fully self-consistent merger simulations of galaxies containing central SMBHs. We find hardening rates of the massive binaries that are indeed much higher than in spherical models, and essentially independent of the number of particles used in the simulations. Binary eccentricities remain high throughout the simulations. Our results constitute a fully stellar-dynamical solution to the final-parsec problem and imply a potentially high rate of events for low-frequency gravitational wave detectors like LISA.



قيم البحث

اقرأ أيضاً

Gravitational-wave (GW) recoil of merging supermassive black holes (SMBHs) may influence the co-evolution of SMBHs and their host galaxies. We examine this possibility using SPH/N-body simulations of gaseous galaxy mergers in which the merged BH rece ives a recoil kick. With our suite of over 200 merger simulations, we identify systematic trends in the behavior of recoiling BHs. Our main results are as follows. (1) While BHs kicked at nearly the central escape speed (vesc) are essentially lost to the galaxy, in gas rich mergers, BHs kicked with up to about 0.7 vesc may be confined to the central few kpc of the galaxy. (2) The inflow of cold gas during a gas-rich major merger may cause a rapid increase in central escape speed; in such cases recoil trajectories will depend on the timing of the BH merger relative to the change in vesc. (3) Recoil events generally reduce the lifetimes of bright active galactic nuclei (AGN) but may actually extend AGN lifetimes at lower luminosities. (4) Recoiling AGN may be observable via kinematic offsets (v > 500 km s^-1) or spatial offsets (R > 1 kpc) for lifetimes of up to about 10 - 100 Myr. (5) Rapidly-recoiling BHs may be up to about 5 times less massive than their stationary counterparts. These mass deficits lower the normalization of the M - sigma relation and contribute to both intrinsic and overall scatter. (6) Finally, the displacement of AGN feedback by a recoil event causes higher central star formation rates in the merger remnant, thereby extending the starburst phase of the merger and creating a denser, more massive stellar cusp.
362 - F.K. Liu 2013
Off-center stellar tidal disruption flares have been suggested to be a powerful probe of recoiling supermassive black holes (SMBHs) out of galactic centers due to anisotropic gravitational wave radiations. However, off-center tidal flares can also be produced by SMBHs in merging galaxies. In this paper, we computed the tidal flare rates by dual SMBHs in two merging galaxies before the SMBHs become self-gravitationally bounded. We employ an analytical model to calculate the tidal loss-cone feeding rates for both SMBHs, taking into account two-body relaxation of stars, tidal perturbations by the companion galaxy, and chaotic stellar orbits in triaxial gravitational potential. We show that for typical SMBHs with mass 10^7 M_sun, the loss-cone feeding rates are enhanced by mergers up to Gamma ~ 10^{-2} yr^{-1}, about two order of magnitude higher than those by single SMBHs in isolated galaxies and about four orders of magnitude higher than those by recoiling SMBHs. The enhancements are mainly due to tidal perturbations by the companion galaxy. We suggest that off-center tidal flares are overwhelmed by those from merging galaxies, making the identification of recoiling SMBHs challenging. Based on the calculated rates, we estimate the relative contributions of tidal flare events by single, binary, and dual SMBH systems during cosmic time. Our calculations show that the off-center tidal disruption flares by un-bound SMBHs in merging galaxies contribute a fraction comparable to that by single SMBHs in isolated galaxies. We conclude that off-center tidal disruptions are powerful tracers of the merging history of galaxies and SMBHs.
109 - F.K. Liu 2003
The activity of active galaxy may be triggered by the merge of galaxies and present-day galaxies are probably the product of successive minor mergers. The frequent galactic merges at high redshift imply that active galaxy harbors supermassive unequal -mass binary black holes in its center at least once during its life time. In this paper, we showed that the recently discovered double-lobed FR II radio galaxies are the remnants of such supermassive binary black holes. The inspiraling secondary black hole opens a gap in the accretion disk and removes the inner accretion disk when it merges into the primary black hole, leaving a big hole of about several hundreds of Schwarzschild radius in the vicinity of the post-merged supermassive black hole and leading to an interruption of jet formation. When the outer accretion disk slowly refills the big hole on a viscous time scale, the jet formation restarts and the interaction of the recurrent jets and the inter-galactic medium forms a secondary pair of lobes. We applied the model to a particular double-lobed radio source B1834+620 and showed that the orbit of the secondary is elliptical with a typical eccentricity $e simeq 0.68$ and the mass ratio $q$ of the secondary and the primary is $0.01 la q la 0.4$. The accretion disk is a standard $alpha$-disk with $0.01 la alpha la 0.04$ and the ratio of disk half height $H$ and radius $r$ is $delta simeq 0.01$. The model predicates that double-lobed radio structure forms only in FR II radio galaxies.
We present the first fully relativistic prediction of the electromagnetic emission from the surrounding gas of a supermassive binary black hole system approaching merger. Using a ray-tracing code to post-process data from a general relativistic 3-d M HD simulation, we generate images and spectra, and analyze the viewing angle dependence of the light emitted. When the accretion rate is relatively high, the circumbinary disk, accretion streams, and mini-disks combine to emit light in the UV/EUV bands. We posit a thermal Compton hard X-ray spectrum for coronal emission; at high accretion rates, it is almost entirely produced in the mini-disks, but at lower accretion rates it is the primary radiation mechanism in the mini-disks and accretion streams as well. Due to relativistic beaming and gravitational lensing, the angular distribution of the power radiated is strongly anisotropic, especially near the equatorial plane.
131 - R. OShaughnessy 2011
In the last few years before merger, supermassive black hole binaries will rapidly inspiral and precess in a magnetic field imposed by a surrounding circumbinary disk. Multiple simulations suggest this relative motion will convert some of the local e nergy to a Poynting-dominated outflow, with a luminosity 10^{43} erg/s * (B/10^4 G)^2(M/10^8 Msun)^2 (v/0.4 c)^2, some of which may emerge as synchrotron emission at frequencies near 1 GHz where current and planned wide-field radio surveys will operate. On top of a secular increase in power on the gravitational wave inspiral timescale, orbital motion will produce significant, detectable modulations, both on orbital periods and (if black hole spins are not aligned with the binarys total angular momenta) spin-orbit precession timescales. Because the gravitational wave merger time increases rapidly with separation, we find vast numbers of these transients are ubiquitously predicted, unless explicitly ruled out (by low efficiency $epsilon$) or obscured (by accretion geometry f_{geo}). If the fraction of Poynting flux converted to radio emission times the fraction of lines of sight accessible $f_{geo}$ is sufficiently large (f_{geo} epsilon > 2times 10^{-4} for a 1 year orbital period), at least one event is accessible to future blind surveys at a nominal 10^4 {deg}^2 with 0.5 mJy sensitivity. Our procedure generalizes to other flux-limited surveys designed to investigate EM signatures associated with many modulations produced by merging SMBH binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا