ﻻ يوجد ملخص باللغة العربية
The maximum oscillation frequency (fmax) quantifies the practical upper bound for useful circuit operation. We report here an fmax of 70 GHz in transistors using epitaxial graphene grown on the C-face of SiC. This is a significant improvement over Si-face epitaxial graphene used in the prior high frequency transistor studies, exemplifying the superior electronics potential of C-face epitaxial graphene. Careful transistor design using a high {kappa} dielectric T-gate and self-aligned contacts, further contributed to the record-breaking fmax.
Epitaxial graphene layers were grown on the C-face of 4H- and 6H-SiC using an argon-mediated growth process. Variations in growth temperature and pressure were found to dramatically affect the morphological properties of the layers. The presence of a
Growth of epitaxial graphene on the C-face of SiC has been investigated. Using a confinement controlled sublimation (CCS) method, we have achieved well controlled growth and been able to observe propagation of uniform monolayer graphene. Surface patt
Up to two layers of epitaxial graphene have been grown on the Si-face of two-inch SiC wafers exhibiting room-temperature Hall mobilities up to 1800 cm^2/Vs, measured from ungated, large, 160 micron x 200 micron Hall bars, and up to 4000 cm^2/Vs, from
This paper describes the behavior of top gated transistors fabricated using carbon, particularly epitaxial graphene on SiC, as the active material. In the past decade research has identified carbon-based electronics as a possible alternative to silic
We present the results of the experimental investigation of the low - frequency noise in bilayer graphene transistors. The back - gated devices were fabricated using the electron beam lithography and evaporation. The charge neutrality point for the f