ترغب بنشر مسار تعليمي؟ اضغط هنا

Wafer-scale Epitaxial Graphene Growth on the Si-face of Hexagonal SiC (0001) for High Frequency Transistors

164   0   0.0 ( 0 )
 نشر من قبل Christos Dimitrakopoulos
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Up to two layers of epitaxial graphene have been grown on the Si-face of two-inch SiC wafers exhibiting room-temperature Hall mobilities up to 1800 cm^2/Vs, measured from ungated, large, 160 micron x 200 micron Hall bars, and up to 4000 cm^2/Vs, from top-gated, small, 1 micron x 1.5 micron Hall bars. The growth process involved a combination of a cleaning step of the SiC in a Si-containing gas, followed by an annealing step in Argon for epitaxial graphene formation. The structure and morphology of this graphene has been characterized using AFM, HRTEM, and Raman spectroscopy. Furthermore, top-gated radio frequency field effect transistors (RF-FETs) with a peak cutoff frequency fT of 100 GHz for a gate length of 240 nm were fabricated using epitaxial graphene grown on the Si face of SiC that exhibited Hall mobilities up to 1450 cm^2/Vs from ungated Hall bars and 1575 cm^2/Vs from top-gated ones. This is by far the highest cut-off frequency measured from any kind of graphene.



قيم البحث

اقرأ أيضاً

We report the realization of top-gated graphene nanoribbon field effect transistors (GNRFETs) of ~10 nm width on large-area epitaxial graphene exhibiting the opening of a band gap of ~0.14 eV. Contrary to prior observations of disordered transport an d severe edge-roughness effects of GNRs, the experimental results presented here clearly show that the transport mechanism in carefully fabricated GNRFETs is conventional band-transport at room temperature, and inter-band tunneling at low temperature. The entire space of temperature, size, and geometry dependent transport properties and electrostatics of the GNRFETs are explained by a conventional thermionic emission and tunneling current model. Our combined experimental and modeling work proves that carefully fabricated narrow GNRs behave as conventional semiconductors, and remain potential candidates for electronic switching devices.
High-performance graphene field-effect transistors have been fabricated on epitaxial graphene synthesized on a two-inch SiC wafer, achieving a cutoff frequency of 100 GHz for a gate length of 240 nm. The high-frequency performance of these epitaxial graphene transistors not only shows the highest speed for any graphene devices up to date, but it also exceeds that of Si MOSFETs at the same gate length. The result confirms the high potential of graphene for advanced electronics applications, marking an important milestone for carbon electronics.
The thermal decomposition of SiC surface provides, perhaps, the most promising method for the epitaxial growth of graphene on a material useful in the electronics platform. Currently, efforts are focused on a reliable method for the growth of large-a rea, low-strain epitaxial graphene that is still lacking. We report here a novel method for the fast, single-step epitaxial growth of large-area homogeneous graphene film on the surface of SiC(0001) using an infrared CO2 laser (10.6 {mu}m) as the heating source. Apart from enabling extreme heating and cooling rates, which can control the stacking order of epitaxial graphene, this method is cost-effective in that it does not necessitate SiC pre-treatment and/or high vacuum, it operates at low temperature and proceeds in the second time scale, thus providing a green solution to EG fabrication and a means to engineering graphene patterns on SiC by focused laser beams. Uniform, low-strain graphene film is demonstrated by scanning electron microscopy and x-ray photoelectron, secondary ion mass, and Raman spectroscopies. Scalability to industrial level of the method described here appears to be realistic, in view of the high rate of CO2-laser induced graphene growth and the lack of strict sample-environment conditions.
This paper describes the behavior of top gated transistors fabricated using carbon, particularly epitaxial graphene on SiC, as the active material. In the past decade research has identified carbon-based electronics as a possible alternative to silic on-based electronics. This enthusiasm was spurred by high carbon nanotube carrier mobilities. However, nanotube production, placement, and control are all serious issues. Graphene, a thin sheet of graphitic carbon, can overcome some of these problems and therefore is a promising new electronic material. Although graphene devices have been built before, in this work we provide the first demonstration and systematic evaluation of arrays of a large number of transistors entirely produced using standard microelectronics methods. Graphene devices presented feature high-k dielectric, mobilities up to 5000 cm2/Vs and, Ion/Ioff ratios of up to 7, and are methodically analyzed to provide insight into the substrate properties. Typical of graphene, these micron-scale devices have negligible band gaps and therefore large leakage currents.
Growth of epitaxial graphene on the C-face of SiC has been investigated. Using a confinement controlled sublimation (CCS) method, we have achieved well controlled growth and been able to observe propagation of uniform monolayer graphene. Surface patt erns uncover two important aspects of the growth, i.e. carbon diffusion and stoichiometric requirement. Moreover, a new stepdown growth mode has been discovered. Via this mode, monolayer graphene domains can have an area of hundreds of square micrometers, while, most importantly, step bunching is avoided and the initial uniformly stepped SiC surface is preserved. The stepdown growth provides a possible route towards uniform epitaxial graphene in wafer size without compromising the initial flat surface morphology of SiC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا