ﻻ يوجد ملخص باللغة العربية
Symbolic approaches to the control design over complex systems employ the construction of finite-state models that are related to the original control systems, then use techniques from finite-state synthesis to compute controllers satisfying specifications given in a temporal logic, and finally translate the synthesized schemes back as controllers for the concrete complex systems. Such approaches have been successfully developed and implemented for the synthesis of controllers over non-probabilistic control systems. In this paper, we extend the technique to probabilistic control systems modeled by controlled stochastic differential equations. We show that for every stochastic control system satisfying a probabilistic variant of incremental input-to-state stability, and for every given precision $varepsilon>0$, a finite-state transition system can be constructed, which is $varepsilon$-approximately bisimilar (in the sense of moments) to the original stochastic control system. Moreover, we provide results relating stochastic control systems to their corresponding finite-state transition systems in terms of probabilistic bisimulation relations known in the literature. We demonstrate the effectiveness of the construction by synthesizing controllers for stochastic control systems over rich specifications expressed in linear temporal logic. The discussed technique enables a new, automated, correct-by-construction controller synthesis approach for stochastic control systems, which are common mathematical models employed in many safety critical systems subject to structured uncertainty and are thus relevant for cyber-physical applications.
Discrete abstractions have become a standard approach to assist control synthesis under complex specifications. Most techniques for the construction of discrete abstractions are based on sampling of both the state and time spaces, which may not be ab
Networked robotic systems, such as connected vehicle platoons, can improve the safety and efficiency of transportation networks by allowing for high-speed coordination. To enable such coordination, these systems rely on networked communications. This
In this paper, we propose a compositional approach to construct opacity-preserving finite abstractions (a.k.a symbolic models) for networks of discrete-time nonlinear control systems. Particularly, we introduce new notions of simulation functions tha
In this paper, we propose a chance constrained stochastic model predictive control scheme for reference tracking of distributed linear time-invariant systems with additive stochastic uncertainty. The chance constraints are reformulated analytically b
In this paper, we investigate a sparse optimal control of continuous-time stochastic systems. We adopt the dynamic programming approach and analyze the optimal control via the value function. Due to the non-smoothness of the $L^0$ cost functional, in