ترغب بنشر مسار تعليمي؟ اضغط هنا

Symbolic control of stochastic systems via approximately bisimilar finite abstractions

102   0   0.0 ( 0 )
 نشر من قبل Majid Zamani
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Symbolic approaches to the control design over complex systems employ the construction of finite-state models that are related to the original control systems, then use techniques from finite-state synthesis to compute controllers satisfying specifications given in a temporal logic, and finally translate the synthesized schemes back as controllers for the concrete complex systems. Such approaches have been successfully developed and implemented for the synthesis of controllers over non-probabilistic control systems. In this paper, we extend the technique to probabilistic control systems modeled by controlled stochastic differential equations. We show that for every stochastic control system satisfying a probabilistic variant of incremental input-to-state stability, and for every given precision $varepsilon>0$, a finite-state transition system can be constructed, which is $varepsilon$-approximately bisimilar (in the sense of moments) to the original stochastic control system. Moreover, we provide results relating stochastic control systems to their corresponding finite-state transition systems in terms of probabilistic bisimulation relations known in the literature. We demonstrate the effectiveness of the construction by synthesizing controllers for stochastic control systems over rich specifications expressed in linear temporal logic. The discussed technique enables a new, automated, correct-by-construction controller synthesis approach for stochastic control systems, which are common mathematical models employed in many safety critical systems subject to structured uncertainty and are thus relevant for cyber-physical applications.



قيم البحث

اقرأ أيضاً

Discrete abstractions have become a standard approach to assist control synthesis under complex specifications. Most techniques for the construction of discrete abstractions are based on sampling of both the state and time spaces, which may not be ab le to guarantee safety for continuous-time systems. In this work, we aim at addressing this problem by considering only state-space abstraction. Firstly, we connect the continuous-time concrete system with its discrete (state-space) abstraction with a control interface. Then, a novel stability notion called controlled globally asymptotic/practical stability with respect to a set is proposed. It is shown that every system, under the condition that there exists an admissible control interface such that the augmented system (composed of the concrete system and its abstraction) can be made controlled globally practically stable with respect to the given set, is approximately simulated by its discrete abstraction. The effectiveness of the proposed results is illustrated by a simulation example.
Networked robotic systems, such as connected vehicle platoons, can improve the safety and efficiency of transportation networks by allowing for high-speed coordination. To enable such coordination, these systems rely on networked communications. This can make them susceptible to cyber attacks. Though security methods such as encryption or specially designed network topologies can increase the difficulty of successfully executing such an attack, these techniques are unable to guarantee secure communication against an attacker. More troublingly, these security methods are unable to ensure that individual agents are able to detect attacks that alter the content of specific messages. To ensure resilient behavior under such attacks, this paper formulates a networked linear time-varying version of dynamic watermarking in which each agent generates and adds a private excitation to the input of its corresponding robotic subsystem. This paper demonstrates that such a method can enable each agent in a networked robotic system to detect cyber attacks. By altering measurements sent between vehicles, this paper illustrates that an attacker can create unstable behavior within a platoon. By utilizing the dynamic watermarking method proposed in this paper, the attack is detected, allowing the vehicles in the platoon to gracefully degrade to a non-communicative control strategy that maintains safety across a variety of scenarios.
74 - Siyuan Liu , Majid Zamani 2020
In this paper, we propose a compositional approach to construct opacity-preserving finite abstractions (a.k.a symbolic models) for networks of discrete-time nonlinear control systems. Particularly, we introduce new notions of simulation functions tha t characterize the distance between control systems while preserving opacity properties across them. Instead of treating large-scale systems in a monolithic manner, we develop a compositional scheme to construct the interconnected finite abstractions together with the overall opacity-preserving simulation functions. For a network of incrementally input-to-state stable control systems and under some small-gain type condition, an algorithm for designing local quantization parameters is presented to orderly build the local symbolic models of subsystems such that the network of symbolic models simulates the original network for an a-priori defined accuracy while preserving its opacity properties.
114 - Christoph Mark , Steven Liu 2021
In this paper, we propose a chance constrained stochastic model predictive control scheme for reference tracking of distributed linear time-invariant systems with additive stochastic uncertainty. The chance constraints are reformulated analytically b ased on mean-variance information, where we design suitable Probabilistic Reachable Sets for constraint tightening. Furthermore, the chance constraints are proven to be satisfied in closed-loop operation. The design of an invariant set for tracking complements the controller and ensures convergence to arbitrary admissible reference points, while a conditional initialization scheme provides the fundamental property of recursive feasibility. The paper closes with a numerical example, highlighting the convergence to changing output references and empirical constraint satisfaction.
In this paper, we investigate a sparse optimal control of continuous-time stochastic systems. We adopt the dynamic programming approach and analyze the optimal control via the value function. Due to the non-smoothness of the $L^0$ cost functional, in general, the value function is not differentiable in the domain. Then, we characterize the value function as a viscosity solution to the associated Hamilton-Jacobi-Bellman (HJB) equation. Based on the result, we derive a necessary and sufficient condition for the $L^0$ optimality, which immediately gives the optimal feedback map. Especially for control-affine systems, we consider the relationship with $L^1$ optimal control problem and show an equivalence theorem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا