ﻻ يوجد ملخص باللغة العربية
Quantum theory allows for randomness generation in a device-independent setting, where no detailed description of the experimental device is required. Here we derive a general upper bound on the amount of randomness that can be generated in such a setting. Our bound applies to any black-box scenario, thus covering a wide range of scenarios from partially characterised to completely uncharacterised devices. Specifically, we prove that the number of random bits that can be generated is limited by the number of different input states that enter the measurement device. We show explicitly that our bound is tight in the simplest case. More generally, our work indicates that the prospects of generating a large amount of randomness by using high-dimensional (or even continuous variable) systems will be extremely challenging in practice.
Work extraction from a heat engine in a cycle by a quantum mechanical device (quantum piston) is analyzed. The standard definition of work fails in the quantum domain. The correct extractable work and its efficiency bound are shown to crucially depen
Randomness comes in two qualitatively different forms. Apparent randomness can result both from ignorance or lack of control of degrees of freedom in the system. In contrast, intrinsic randomness should not be ascribable to any such cause. While clas
We establish a theoretical understanding of the entanglement properties of a physical system that mediates a quantum information splitting protocol. We quantify the different ways in which an arbitrary $n$ qubit state can be split among a set of $k$
We consider the production of charmed baryons and mesons in the proton-antiproton binary reactions at the energies of the future $bar{P}$ANDA experiment. To describe these processes in terms of hadronic interaction models, one needs strong couplings
The extraction of information from a quantum system unavoidably implies a modification of the measured system itself. It has been demonstrated recently that partial measurements can be carried out in order to extract only a portion of the information