ﻻ يوجد ملخص باللغة العربية
Infrared photometry of the probable triple WC4(+O?)+O8I: Wolf-Rayet system HD 36402 (= BAT99-38) in the Large Magellanic Cloud (LMC) shows emission characteristic of heated dust. The dust emission is variable on a time-scale of years, with a period near 4.7 yr, possibly associated with orbital motion of the O8 supergiant and the inner P ~ 3.03-d WC4+O binary. The phase of maximum dust emission is close to that of the X-ray minimum, consistent with both processes being tied to colliding wind effects in an elliptical binary orbit. It is evident that Wolf-Rayet dust formation occurs also in metal-poor environments.
Mid-infrared photometry of the Wolf-Rayet star HD 38030 in the Large Magellanic Cloud from the NEOWISE-R mission show it to have undergone a dust-formation episode in 2018 and the dust to have cooled in 2019-20. New spectroscopy with the MagE spectro
The favoured progenitors of long-duration gamma-ray bursts (GRBs) are rapidly rotating Wolf-Rayet (WR) stars. However, most Galactic WR stars are slow rotators, as stellar winds are thought to remove angular momentum. This poses a challenge to the co
Aims: Following our comprehensive studies of the WR stars in the Milky Way, we now present spectroscopic analyses of almost all known WN stars in the LMC. Methods: For the quantitative analysis of the wind-dominated emission-line spectra, we employ t
Infrared imaging of the colliding-wind binary Apep has revealed a spectacular dust plume with complicated internal dynamics that challenges standard colliding-wind binary physics. Such challenges can be potentially resolved if a rapidly-rotating Wolf
Surveys of Wolf-Rayet (WR) stars in the Large Magellanic Cloud (LMC) have yielded a fairly complete catalog of 154 known stars. We have conducted a comprehensive, multiwavelength study of the interstellar/circumstellar environments of WR stars, using