ﻻ يوجد ملخص باللغة العربية
We construct a generalization of the Hasse invariant for certain unitary Shimura varieties of PEL type whose vanishing locus is the complement of the so-called mu-ordinary locus. We show that the mu-ordinary locus of those varieties is affine. As an application, we strengthen a special case of a theorem of one of us (W.G.) on the association of Galois representations to automorphic representations of unitary groups whose archimedean component is a holomorphic limit of discrete series.
Let k be a global field of characteristic not 2. We prove a local-global principle for the existence of self-dual normal bases, and more generally for the isomorphism of G-trace forms, of G-Galois algebras over k.
It is known that the Brauer--Manin obstruction to the Hasse principle is vacuous for smooth Fano hypersurfaces of dimension at least $3$ over any number field. Moreover, for such varieties it follows from a general conjecture of Colliot-Thel`ene that
We construct an Enriques surface X over Q with empty etale-Brauer set (and hence no rational points) for which there is no algebraic Brauer-Manin obstruction to the Hasse principle. In addition, if there is a transcendental obstruction on X, then we
Let $L$ be a finite extension of $mathbb{F}_q(t)$. We calculate the proportion of polynomials of degree $d$ in $mathbb{F}_q[t]$ that are everywhere locally norms from $L/mathbb{F}_q(t)$ which fail to be global norms from $L/mathbb{F}_q(t)$.
Let $F$ be a totally real field of degree $g$, and let $p$ be a prime number. We construct $g$ partial Hasse invariants on the characteristic $p$ fiber of the Pappas-Rapoport splitting model of the Hilbert modular variety for $F$ with level prime to