ﻻ يوجد ملخص باللغة العربية
Conflicting predictions have been made for the ground state of the SU(3) Heisenberg model on the honeycomb lattice: Tensor network simulations found a plaquette order [Zhao et al, Phys. Rev. B 85, 134416 (2012)], where singlets are formed on hexagons, while linear flavor-wave theory (LFWT) suggested a dimerized, color ordered state [Lee and Yang, Phys. Rev. B 85, 100402 (2012)]. In this work we show that the former state is the true ground state by a systematic study with infinite projected-entangled pair states (iPEPS), for which the accuracy can be systematically controlled by the so-called bond dimension $D$. Both competing states can be reproduced with iPEPS by using different unit cell sizes. For small $D$ the dimer state has a lower variational energy than the plaquette state, however, for large $D$ it is the latter which becomes energetically favorable. The plaquette formation is also confirmed by exact diagonalizations and variational Monte Carlo studies, according to which both the dimerized and plaquette states are non-chiral flux states.
We study the possible ground state configurations of two strongly coupled chains of charge neutral spin-3/2 fermionic atoms interacting via short range van der Waals interaction. The coupling between the two chains is realized by relatively large hop
We study the plaquette valence-bond solid phase of the spin-1/2 J_1-J_2 antiferromagnet Heisenberg model on the square lattice within the bond-operator theory. We start by considering four S = 1/2 spins on a single plaquette and determine the bond op
The honeycomb lattice material Li2RuO3 undergoes a dimerization of Ru4+ cations on cooling below 270C, where the magnetic susceptibility vanishes. We use density functional theory calculations to show that this reflects the formation of a valence bon
Using variational wave functions and Monte Carlo techniques, we study the antiferromagnetic Heisenberg model with first-neighbor $J_1$ and second-neighbor $J_2$ antiferromagnetic couplings on the honeycomb lattice. We perform a systematic comparison
We investigate magnetic properties of strongly interacting four component spin-3/2 ultracold fermionic atoms in the Mott insulator limit with one particle per site in an optical lattice with honeycomb symmetry. In this limit, atomic tunneling is virt