ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dynamical Masses, Densities, and Star Formation Scaling Relations of Lyman Alpha Galaxies

369   0   0.0 ( 0 )
 نشر من قبل James E. Rhoads
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first dynamical mass measurements for Lyman alpha galaxies at high redshift, based on velocity dispersion measurements from rest-frame optical emission lines and size measurements from HST imaging, for a sample of nine galaxies drawn from four surveys. These measurements enable us to study the nature of Lyman alpha galaxies in the context of galaxy scaling relations. The resulting dynamical masses range from 1e9 to 1e10 solar masses. We also fit stellar population models to our sample, and use them to plot the Lyman alpha sample on a stellar mass vs. line width relation. Overall, the Lyman alpha galaxies follow well the scaling relation established by observing star forming galaxies at lower redshift (and without regard for Lyman alpha emission), though in 1/3 of the Lyman alpha galaxies, lower-mass fits are also acceptable. In all cases, the dynamical masses agree with established stellarmass-linewidth relation. Using the dynamical masses as an upper limit on gas mass, we show that Lyman alpha galaxies resemble starbursts (rather than normal galaxies) in the relation between gas mass surface density and star formation activity, in spite of relatively modest star formation rates. Finally, we examine the mass densities of these galaxies, and show that their future evolution likely requires dissipational (wet) merging. In short, we find that Lyman alpha galaxies are low mass cousins of larger starbursts.

قيم البحث

اقرأ أيضاً

108 - F. Bigiel , A. Leroy , F. Walter 2010
High resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of HI, H2 and star formation rate (Sigma_HI, Sigma_H2, Sigma_SFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. Sigma_H2, traced by CO intensity, shows a strong correlation with Sigma_SFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2Gyr in large spiral galaxies. Within the star-forming disks of galaxies, Sigma_SFR shows almost no correlation with Sigma_HI. In the outer parts of galaxies, however, Sigma_SFR does scale with Sigma_HI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Sigma_gas - Sigma_SFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Sigma_gas - Sigma_SFR space.
114 - R. A. Overzier , X. Shu , W. Zheng 2009
We present new information on galaxies in the vicinity of luminous radio galaxies and quasars at z=4,5,6. These fields were previously found to contain overdensities of Lyman Break Galaxies (LBGs) or spectroscopic Lyman alpha emitters. We use HST and Spitzer data to infer stellar masses, and contrast our results with large samples of LBGs in more average environments as probed by the Great Observatories Origins Deep Survey (GOODS). The following results were obtained. First, LBGs in both overdense regions and in the field at z=4-5 lie on a very similar sequence in a z-[3.6] versus [3.6] color-magnitude diagram. This is interpreted as a sequence in stellar mass (log[M*/Msun] = 9-11) in which galaxies become increasingly red due to dust and age as their star formation rate (SFR) increases. Second, the two radio galaxies are among the most massive objects (log[M*/Msun]~11) known to exist at z~4-5, and are extremely rare based on the low number density of such objects as estimated from the ~25x larger area GOODS survey. We suggest that the presence of these massive galaxies and supermassive black holes has been boosted through rapid accretion of gas or merging inside overdense regions. Third, the total stellar mass found in the z=4 ``proto-cluster TN1338 accounts for <30% of the stellar mass on the cluster red sequence expected to have formed at z>4, based on a comparison with the massive X-ray cluster Cl1252 at z=1.2. Although future near-infrared observations should determine whether any massive galaxies are currently being missed, one possible explanation for this mass difference is that TN1338 evolves into a smaller cluster than Cl1252. This raises the interesting question of whether the most massive protocluster regions at z>4 remain yet to be discovered.
113 - Zheng Zheng 2010
Lyman-alpha (Lya) photons that escape the interstellar medium of star-forming galaxies may be resonantly scattered by neutral hydrogen atoms in the circumgalactic and intergalactic media, thereby increasing the angular extent of the galaxys Lya emiss ion. We present predictions of this extended, low surface brightness Lya emission based on radiative transfer modeling in a cosmological reionization simulation. The extended emission can be detected from stacked narrowband images of Lya emitters (LAEs) or of Lyman break galaxies (LBGs). Its average surface brightness profile has a central cusp, then flattens to an approximate plateau beginning at an inner characteristic scale below ~0.2 Mpc (comoving), then steepens again beyond an outer characteristic scale of ~1 Mpc. The inner scale marks the transition from scattered light of the central source to emission from clustered sources, while the outer scale marks the spatial extent of scattered emission from these clustered sources. Both scales tend to increase with halo mass, UV luminosity, and observed Lya luminosity. The extended emission predicted by our simulation is already within reach of deep narrowband photometry using large ground-based telescopes. Such observations would test radiative transfer models of emission from LAEs and LBGs, and they would open a new window on the circumgalactic environment of high-redshift star-forming galaxies.
92 - Hidenobu Yajima 2012
A large number of high-redshift galaxies have been discovered via their narrow-band Lya line or broad-band continuum colors in recent years. The nature of the escaping process of photons from these early galaxies is crucial to understanding galaxy ev olution and the cosmic reionization. Here, we investigate the escape of Lya, non-ionizing UV-continuum (l = 1300 - 1600 angstrom in rest frame), and ionizing photons (l < 912 angstrom) from galaxies by combining a cosmological hydrodynamic simulation with three-dimensional multi-wavelength radiative transfer calculations. The galaxies are simulated in a box of 5^3 h^-3 Mpc^3 with high resolutions using the Aquila initial condition which reproduces a Milky Way-like galaxy at redshift z=0. We find that the escape fraction (fesc) of these different photons shows a complex dependence on redshift and galaxy properties: fesc(Lya) and fesc(UV) appear to evolve with redshift, and they show similar, weak correlations with galaxy properties such as mass, star formation, metallicity, and dust content, while fesc(Ion) remains roughly constant at ~ 0.2 from z ~ 0 - 10, and it does not show clear dependence on galaxy properties. fesc(Lya) correlates more strongly with fesc(UV) than with fesc(Ion). In addition, we find a relation between the emergent Lya luminosity and the ionizing photon emissivity of Lyman Alpha Emitters (LAEs). By combining this relation with the observed luminosity functions of LAEs at different redshift, we estimate the contribution from LAEs to the reionization of intergalactic medium (IGM). Our result suggests that ionizing photons from LAEs alone are not sufficient to ionize IGM at z > 6, but they can maintain the ionization of IGM at z ~ 0 - 5.
Establishing the stellar masses (M*), and hence specific star-formation rates (sSFRs) of submillimetre galaxies (SMGs) is crucial for determining their role in the cosmic galaxy/star formation. However, there is as yet no consensus over the typical M * of SMGs. Specifically, even for the same set of SMGs, the reported average M* have ranged over an order of magnitude, from ~5x10^10 Mo to ~5x10^11 Mo. Here we study how different methods of analysis can lead to such widely varying results. We find that, contrary to recent claims in the literature, potential contamination of IRAC 3-8 um photometry from hot dust associated with an active nucleus is not the origin of the published discrepancies in derived M*. Instead, we expose in detail how inferred M* depends on assumptions made in the photometric fitting, and quantify the individual and cumulative effects of different choices of initial mass function, different brands of evolutionary synthesis models, and different forms of assumed star-formation history. We review current observational evidence for and against these alternatives as well as clues from the hydrodynamical simulations, and conclude that, for the most justifiable choices of these model inputs, the average M* of SMGs is ~2x10^11 Mo. We also confirm that this number is perfectly reasonable in the light of the latest measurements of their dynamical masses, and the evolving M* function of the overall galaxy population. M* of this order imply that the average sSFR of SMGs is comparable to that of other star-forming galaxies at z>2, at 2-3 Gyr^-1. This supports the view that, while rare outliers may be found at any M*, most SMGs simply form the top end of the main-sequence of star-forming galaxies at these redshifts. Conversely, this argues strongly against the viewpoint that SMGs are extreme pathological objects, of little relevance in the cosmic history of star-formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا