ﻻ يوجد ملخص باللغة العربية
We examine actions of finite-dimensional pointed Hopf algebras on central simple division algebras in characteristic 0. (By a Hopf action we mean a Hopf module algebra structure.) In all examples considered, we show that the given Hopf algebra does admit a faithful action on a central simple division algebra, and we construct such a division algebra. This is in contrast to earlier work of Etingof and Walton, in which it was shown that most pointed Hopf algebras do not admit faithful actions on fields. We consider all bosonizations of Nichols algebras of finite Cartan type, small quantum groups, generalized Taft algebras with non-nilpotent skew primitive generators, and an example of non-Cartan type.
Let $mathbb{k}$ be an algebraically closed field of characteristic zero. Let $D$ be a division algebra of degree $d$ over its center $Z(D)$. Assume that $mathbb{k}subset Z(D)$. We show that a finite group $G$ faithfully grades $D$ if and only if $G$
We study actions of pointed Hopf algebras in the $ZZ$-graded setting. Our main result classifies inner-faithful actions of generalized Taft algebras on quantum generalized Weyl algebras which respect the $ZZ$-grading. We also show that generically th
We study actions of semisimple Hopf algebras H on Weyl algebras A over a field of characteristic zero. We show that the action of H on A must factor through a group algebra; in other words, if H acts inner faithfully on A, then H is cocommutative. Th
We prove that any action of a finite dimensional Hopf algebra H on a Weyl algebra A over an algebraically closed field of characteristic zero factors through a group action. In other words, Weyl algebras do not admit genuine finite quantum symmetries
We show that all finite dimensional pointed Hopf algebras with the same diagram in the classification scheme of Andruskiewitsch and Schneider are cocycle deformations of each other. This is done by giving first a suitable characterization of such Hop