ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutral B mixing from 2+1 flavor lattice QCD

228   0   0.0 ( 0 )
 نشر من قبل Elizabeth Freeland
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an update of the Fermilab-MILC Collaborations calculation of hadronic matrix elements for B^0-bar{B^0} mixing. This work is a more extended analysis than our recent publication of the SU(3)-breaking ratio xi [arXiv:1205.7013]. We use the asqtad staggered action for light valence quarks in combination with the Fermilab interpretation of the Sheikoleslami-Wohlert action for heavy quarks. The calculations use MILCs 2+1 flavor asqtad ensembles. Ensembles include four lattice spacings from approximately 0.125 fm to 0.045 fm and up/down to strange quark mass ratios as low as 0.05. Our calculation covers the complete set of five operators needed to describe B mixing in the Standard Model and beyond. In addition to an update including a fuller set of analyzed data, we comment on the form of the staggered ChPT extrapolation function.



قيم البحث

اقرأ أيضاً

We report on the status of our calculation of the hadronic matrix elements for neutral $B$-meson mixing with asqtad sea and valence light quarks and using the Wilson clover action with the Fermilab interpretation for the $b$ quark. We calculate the m atrix elements of all five local operators that contribute to neutral $B$-meson mixing both in and beyond the Standard Model. We use MILC ensembles with $N_f=2+1$ dynamical flavors at four different lattice spacings in the range $a approx 0.045$--$0.12$~fm, and with light sea-quark masses as low as 0.05 times the physical strange quark mass. We perform a combined chiral-continuum extrapolation including the so-called wrong-spin contributions in simultaneous fits to the matrix elements of the five operators. We present a complete systematic error budget and conclude with an outlook for obtaining final results from this analysis.
We present results for neutral D-meson mixing in 2+1-flavor lattice QCD. We compute the matrix elements for all five operators that contribute to D mixing at short distances, including those that only arise beyond the Standard Model. Our results have an uncertainty similar to those of the ETM collaboration (with 2 and with 2+1+1 flavors). This work shares many features with a recent publication on B mixing and with ongoing work on heavy-light decay constants from the Fermilab Lattice and MILC Collaborations.
We study $B_d$ and $B_s$ mixing in unquenched lattice QCD employing the MILC collaboration gauge configurations that include u, d, and s sea quarks based on the improved staggered quark (AsqTad) action and a highly improved gluon action. We implement the valence light quarks also with the AsqTad action and use the nonrelativistic NRQCD action for the valence b quark. We calculate hadronic matrix elements necessary for extracting CKM matrix elements from experimental measurements of mass differences $Delta M_d$ and $Delta M_s$. We find $xi = f_{B_s} sqrt{hat{B}_{B_s}} / f_{B_d} sqrt{hat{B}_{B_d}} = 1.258(33)$, $f_{B_d} sqrt{hat{B}_{B_d}} = 216(15)$ MeV and $f_{B_s} sqrt{hat{B}_{B_s}} = 266(18)$ MeV. We also update previous results for decay constants and obtain $f_{B_d} = 190(13)$ MeV, $f_{B_s} = 231(15)$ MeV and $f_{B_s}/f_{B_d} = 1.226(26)$. The new lattice results lead to updated values for the ratio of CKM matrix elements $|V_{td}|/|V_{ts}|$ and for the Standard Model prediction for $Br(B_s rightarrow mu^+ mu^-)$ with reduced errors. We determine $|V_{td}|/|V_{ts}| = 0.214(1)(5)$ and $Br(B_s rightarrow mu^+ mu^-) = 3.19(19) times 10^{-9}$.
We investigate the interaction between $Omega$ baryons in the $^1S_0$ channel from 2+1 flavor lattice QCD simulations. On the basis of the HAL QCD method, the $OmegaOmega$ potential is extracted from the Nambu-Bethe-Salpeter wave function calculated on the lattice by using the PACS-CS gauge configurations with the lattice spacing $asimeq 0.09$ fm, the lattice volume $Lsimeq 2.9$ fm and the quark masses corresponding to $m_pi simeq 700$ MeV and $m_Omega simeq 1970$ MeV. The $OmegaOmega$ potential has a repulsive core at short distance and an attractive well at intermediate distance. Accordingly, the phase shift obtained from the potential shows moderate attraction at low energies. Our data indicate that the $OmegaOmega$ system with the present quark masses may appear close to the unitary limit where the scattering length diverges.
We present a study of the $D$ and $B$ leptonic decay constants on the MILC $N_f=2+1$ asqtad gauge ensembles using asqtad-improved staggered light quarks and clover heavy quarks in the Fermilab interpretation. Our previous analysis cite{Bazavov:2011aa } computed the decay constants at lattice spacings $a approx 0.14, 0.11$ and $0.083$ fm. We have extended the simulations to finer $a approx 0.058$ and $0.043$ fm lattice spacings, and have also increased statistics; this allows us to address many important sources of uncertainty. Technical advances include a two-step two-point fit procedure, better tuning of the heavy quark masses and a better determination of the axial-vector current matching. The present analysis remains blinded, so here we focus on the improvements and their predicted impact on the error budget compared to the prior analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا