ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase transition in Pr0.5Ca0.5CoO3 and related cobaltites

633   0   0.0 ( 0 )
 نشر من قبل Karel Knizek
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an extensive investigation (magnetic, electric and thermal measurements and X-ray absorption spectroscopy) of the Pr0.5Ca0.5CoO3 and (Pr1-yYy)0.7Ca0.3CoO3 (y=0.0625-0.15) perovskites, in which a peculiar metal-insulator (M-I) transition, accompanied with pronounced structural and magnetic anomalies, occurs at 76 K and 40-132 K, respectively. The inspection of the M-I transition using the XANES data of Pr L3-edge and Co K-edge proofs the presence of Pr4+ ions at low temperatures and indicates simultaneously the intermediate spin to low spin crossover of Co species on lowering the temperature. The study thus definitively confirms the synchronicity of the electron transfer between Pr3+ ions and Co^(3+/4+)O3 subsystem and the transition to the low-spin, less electrically conducting phase. The large extent of the transfer is evidenced by the good quantitative agreement of the determined amount of the Pr4+ species, obtained either from the temperature dependence of the XANES spectra or via integration of the magnetic entropy change over the Pr4+ related Schottky peak in the low-temperature specific heat. These results show that the average valence of Pr3+/Pr4+ ions increases (in concomitance with the decrease of the formal Co valence) below TMI for (Pr0.925Y0.075)0.7Ca0.3CoO3 up to 3.16+ (the doping level of the CoO3 subsystem decreases from 3.30+ to 3.20+), for (Pr0.85Y0.15)0.7Ca0.3CoO3 up to 3.28+ (the decrease of doping level from 3.30+ to 3.13+) and for Pr0.5Ca0.5CoO3 up to 3.46+ (the decrease of doping level from 3.50+ to 3.27+).



قيم البحث

اقرأ أيضاً

The triple magnetic-transport-structural transition versus temperature in three series of 114 cobaltites - Y1-xYbxBaCo4O7, Y1-xCaxBaCo4O7 and Yb1-xCaxBaCo4O7 - has been studied using magnetic, transport and differential scanning calorimetric measurem ents. The effect of the size mismatch {sigma}2, due to cationic disordering at the Ln sites upon such a transition is shown for the first time in a triangular lattice. We show that increasing <rLn> has an effect of increasing TS dramatically, while the size mismatch {sigma}2 at the Ln sites decreases TS substantially. Moreover, the cationic mismatch at the Ln sites modifies the nature of the hysteretic transition by turning the sharp first order transition seen in the undoped samples into an intermix of first and second order transitions. These results are discussed on the basis of the particular nature of the high temperature form which exhibits a hexagonal close packed structure (space group: P63mc) with respect to the low temperature orthorhombic form (space group: Pbn21), the latter corresponding to a distortion of the former due to a puckering of the kagome layers.
Epitaxial strain imposed in complex oxide thin films by heteroepitaxy is recognized as a powerful tool for identifying new properties and exploring the vast potential of materials performance. A particular example is LaCoO3, a zero spin, nonmagnetic material in the bulk, whose strong ferromagnetism in a thin film remains enigmatic despite a decade of intense research. Here, we use scanning transmission electron microscopy complemented by X-ray and optical spectroscopy to study LaCoO3 epitaxial thin films under different strain states. We observed an unconventional strain relaxation behavior resulting in stripe-like, lattice modulated patterns, which did not involve uncontrolled misfit dislocations or other defects. The modulation entails the formation of ferromagnetically ordered sheets comprising intermediate or high spin Co3+, thus offering an unambiguous description for the exotic magnetism found in epitaxially strained LaCoO3 films. This observation provides a novel route to tailoring the electronic and magnetic properties of functional oxide heterostructures.
In this article we present a neutron diffraction in-situ study of the thermal evolution and high-temperature structure of layered cobaltites Y(Ba, Sr)Co2 O5+{delta}. Neutron thermodiffractograms and magnetic susceptibility measurements are reported i n the temperature range 20 K <= T <= 570 K, as well as high resolution neutron diffraction experiments at selected temperatures. Starting from the as-synthesized samples with {delta} ~ 0.5, we show that the room temperature phases remain stable up to 550 K, where they start loosing oxygen and transform to a vacancy-disordered 112 structure with tetragonal symmetry. Our results also show how the so-called 122 structure can be stabilized at high temperature (around 450 K) in a sample in which the addition of Sr at the Ba site had suppressed its formation. In addition, we present the structural and magnetic properties of the resulting samples with a new oxygen content {delta} ~ 0.25 in the temperature range 20 K <= T <= 300 K.
216 - V. Goian , S. Kamba , O. Pacherova 2012
X-ray diffraction, dynamical mechanical analysis and infrared reflectivity studies revealed an antiferrodistortive phase transition in EuTiO3 ceramics. Near 300K the perovskite structure changes from cubic Pm-3m to tetragonal I4/mcm due to antiphase tilting of oxygen octahedra along the c axis (a0a0c- in Glazer notation). The phase transition is analogous to SrTiO3. However, some ceramics as well as single crystals of EuTiO3 show different infrared reflectivity spectra bringing evidence of a different crystal structure. In such samples electron diffraction revealed an incommensurate tetragonal structure with modulation wavevector q ~ 0.38 a*. Extra phonons in samples with modulated structure are activated in the IR spectra due to folding of the Brillouin zone. We propose that defects like Eu3+ and oxygen vacancies strongly influence the temperature of the phase transition to antiferrodistortive phase as well as the tendency to incommensurate modulation in EuTiO3.
We predict a quantum phase transition in fcc Ca under hydrostatic pressure. Using density functional theory, we find at pressures below 80 kbar, the topology of the electron charge density is characterized by nearest neighbor atoms connected through bifurcated bond paths and deep minima in the octahedral holes. At pressures above 80 kbar, the atoms bond through non-nuclear maxima that form in the octahedral holes. This topological change in the charge density softens the C elastic modulus of fcc Ca, while C$_{44}$ remains unchanged. We propose an order parameter based on applying Morse theory to the charge density, and we show that near the critical point it follows the expected mean-field scaling law with reduced pressure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا