ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark matter in massive galaxies

154   0   0.0 ( 0 )
 نشر من قبل Ortwin Gerhard
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ortwin Gerhard




اسأل ChatGPT حول البحث

The spatial distributions of luminous and dark matter in massive early-type galaxies reflect the formation processes which shaped these systems. This article reviews the predictions of cosmological simulations for the dark and baryonic components of ETGs, and the observational constraints from lensing, hydrostatic X-ray gas athmospheres, and outer halo stellar dynamics.

قيم البحث

اقرأ أيضاً

We review X-ray constraints on dark matter in giant elliptical galaxies (10^{12} M_sun <~ M_vir <~ 10^{13} M_sun) obtained using the current generation of X-ray satellites, beginning with an overview of the physics of the hot interstellar medium and mass modeling methodology. Dark matter is now firmly established in many galaxies, with inferred NFW concentration parameters somewhat larger than the mean theoretical relation. X-ray observations confirm that the total mass profile (baryons+DM) is close to isothermal (M ~ r), and new evidence suggests a more general power-law relation for the slope of the total mass profile that varies with the stellar half-light radius. We also discuss constraints on the baryon fraction, super-massive black holes, and axial ratio of the dark matter halo. Finally, we review constraints on non-thermal gas motions and discuss the accuracy of the hydrostatic equilibrium approximation in elliptical galaxies.
Using observations in the COSMOS field, we report an intriguing correlation between the star formation activity of massive (~10^{11.4}msol) central galaxies, their stellar masses, and the large-scale (~10 Mpc) environments of their group-mass (~10^{1 3.6}msol) dark matter halos. Probing the redshift range z=[0.2,1.0], our measurements come from two independent sources: an X-ray detected group catalog and constraints on the stellar-to-halo mass relation derived from a combination of clustering and weak lensing statistics. At z=1, we find that the stellar mass in star-forming centrals is a factor of two less than in passive centrals at the same halo mass. This implies that the presence or lack of star formation in group-scale centrals cannot be a stochastic process. By z=0, the offset reverses, probably as a result of the different growth rates of these objects. A similar but weaker trend is observed when dividing the sample by morphology rather than star formation. Remarkably, we find that star-forming centrals at z~1 live in groups that are significantly more clustered on 10 Mpc scales than similar mass groups hosting passive centrals. We discuss this signal in the context of halo assembly and recent simulations, suggesting that star-forming centrals prefer halos with higher angular momentum and/or formation histories with more recent growth; such halos are known to evolve in denser large-scale environments. If confirmed, this would be evidence of an early established link between the assembly history of halos on large scales and the future properties of the galaxies that form inside them.
We study the projected radial distribution of satellite galaxies around more than 28,000 Luminous Red Galaxies (LRGs) at 0.28<z<0.40 and trace the gravitational potential of LRG groups in the range 15<r/kpc<700. We show that at large radii the satell ite number density profile is well fitted by a projected NFW profile with r_s~270 kpc and that at small radii this model underestimates the number of satellite galaxies. Utilizing the previously measured stellar light distribution of LRGs from deep imaging stacks we demonstrate that this small scale excess is consistent with a non-negligible baryonic mass contribution to the gravitational potential of massive groups and clusters. The combined NFW+scaled stellar profile provides an excellent fit to the satellite number density profile all the way from 15 kpc to 700 kpc. Dark matter dominates the total mass profile of LRG halos at r>25 kpc whereas baryons account for more than 50% of the mass at smaller radii. We calculate the total dark-to-baryonic mass ratio and show that it is consistent with measurements from weak lensing for environments dominated by massive early type galaxies. Finally, we divide the satellite galaxies in our sample into three luminosity bins and show that the satellite light profiles of all brightness levels are consistent with each other outside of roughly 25 kpc. At smaller radii we find evidence for a mild mass segregation with an increasing fraction of bright satellites close to the central LRG.
Analytic arguments and numerical simulations show that bosonic ultra-light dark matter (ULDM) would form cored density distributions (`solitons) at the center of galaxies. ULDM solitons offer a promising way to exclude or detect ULDM by looking for a distinctive feature in the central region of galactic rotation curves. Baryonic contributions to the gravitational potential pose an obstacle to such analyses, being (i) dynamically important in the inner galaxy and (ii) highly non-spherical in rotation-supported galaxies, resulting in non-spherical solitons. We present an algorithm for finding the ground state soliton solution in the presence of stationary non-spherical background baryonic mass distribution. We quantify the impact of baryons on the predicted ULDM soliton in the Milky Way and in low surface-brightness galaxies from the SPARC database.
Warm dark matter (WDM) means DM particles with mass m in the keV scale. For large scales, (structures beyond ~ 100 kpc) WDM and CDM yield identical results which agree with observations. For intermediate scales, WDM gives the correct abundance of sub structures. Inside galaxy cores, below ~ 100 pc, N-body WDM classical physics simulations are incorrect because at such scales quantum WDM effects are important. WDM quantum calculations (Thomas-Fermi approach) provide galaxy cores, galaxy masses, velocity dispersions and density profiles in agreement with the observations. For a dark matter particle decoupling at thermal equilibrium (thermal relic), all evidences point out to a 2 keV particle. Remarkably enough, sterile neutrinos decouple out of thermal equilibrium with a primordial power spectrum similar to a 2 keV thermal relic when the sterile neutrino mass is about 7 keV. Therefore, WDM can be formed by 7 keV sterile neutrinos. Excitingly enough, Bulbul et al. (2014) announced the detection of a cluster X-ray emission line that could correspond to the decay of a 7.1 keV sterile neutrino and to a neutrino decay mixing angle of sin^2 2 theta ~ 7 10^{-11} . This is a further argument in favour of sterile neutrino WDM. Baryons, represent 10 % of DM or less in galaxies and are expected to give a correction to pure WDM results. The detection of the DM particle depends upon the particle physics model. Sterile neutrinos with keV scale mass (the main WDM candidate) can be detected in beta decay for Tritium and Renium and in the electron capture in Holmiun. The sterile neutrino decay into X rays can be detected observing DM dominated galaxies and through the distortion of the black-body CMB spectrum. So far, not a single valid objection arose against WDM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا