ﻻ يوجد ملخص باللغة العربية
We perform first principles band calculation of the newly discovered superconductor LaO$_{1-x}$F$_x$BiS$_2$, and study the lattice structure and the fluorine doping dependence of the gap between the valence and conduction bands. We find that the distance between La and S as well as the fluorine doping significantly affects the band gap. On the other hand, the four orbital model of the BiS$_2$ layer shows that the lattice structure does not affect this portion of the band. Still, the band gap can affect the carrier concentration in the case of light electron doping, which in turn should affect the transport properties.
We present an analysis of the Nb3Sn surface layers grown on a bulk niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz cavities. Tunneling spectroscopy reveals a well-developed,
The newly discovered BiS$_2$-based LaO$_{1-x}$F$_{x}$BiS$_2$ ($x$=0.5) becomes superconductive at $T_c$=2.5 K. Electrical resistivity and magnetization measurements are performed under pressure to determine the pressure dependence of the superconduct
Two-dimensional transition metal dichalcogenides with strong spin-orbit interactions and valley-dependent Berry curvature effects have attracted tremendous recent interests. Although novel single-particle and excitonic phenomena related to spin-valle
Motivated by recent progress in development of cryogenic memory compatible with single flux quantum (SFQ) circuits we have performed a theoretical study of magnetic SIsFS Josephson junctions, where S is a bulk superconductor, s is a thin superconduct
We develop the realistic minimal electronic model for recently discovered BiS$_2$ superconductors including the spin-orbit coupling based on a first-principles band structure calculations. Due to strong spin-orbit coupling, characteristic for the Bi-