ترغب بنشر مسار تعليمي؟ اضغط هنا

The CORALIE survey for southern extrasolar planets XVII. New and updated long period and massive planets

112   0   0.0 ( 0 )
 نشر من قبل Maxime Marmier
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since 1998, a planet-search program around main sequence stars within 50 pc in the southern hemisphere, is carried out with the CORALIE echelle spectrograph at La Silla Observatory. With an observing time span of more than 14 years, the CORALIE survey is now able to unveil Jovian planets on Jupiters period domain. This growing period-interval coverage is important regarding to formation and migration models since observational constraints are still weak for periods beyond the ice line. Long-term precise Doppler measurements with the CORALIE echelle spectrograph, together with a few additional observations made with the HARPS spectrograph on the ESO 3.6m telescope, reveal radial velocity signatures of massive planetary companions in long period orbits. In this paper we present seven new planets orbiting HD27631, HD98649, HD106515A, HD166724, HD196067, HD219077, and HD220689 together with the CORALIE orbital parameters for three already known planets around HD10647, HD30562, and HD86226. The period range of the new planetary companions goes from 2200 to 5500 days and covers a mass domain between 1 and 10.5 MJup. Surprisingly, five of them present quite high eccentricities above e>0.57. A pumping scenario by Kozai mechanism may be invoked for HD106515Ab and HD196067b which are both orbiting stars in multiple systems. As the presence of a third massive body cant be inferred from the data of HD98649b, HD166724b, and HD219077b, the origin of the eccentricity of these systems remains unknown. Except for HD10647b, no constraint on the upper mass of the planets is provided by Hipparcos astrometric data. Finally it is interesting to note that the hosts of these long period planets show no metallicity excess.



قيم البحث

اقرأ أيضاً

Context. Since 1998, a planet-search around main sequence stars within 50~pc in the southern hemisphere has been carried out with the CORALIE spectrograph at La Silla Observatory. Aims. With an observing time span of more than 20 years, the CORALIE s urvey is able to detect long term trends in data with masses and separations large enough to select ideal targets for direct imaging. Detecting these giant companion candidates will allow us to start bridging the gap between radial velocity detected exoplanets and directly imaged planets and brown dwarfs. Methods. Long-term precise Doppler measurements with the CORALIE spectrograph reveal radial velocity signatures of massive planetary companions and brown dwarfs on long-period orbits. Results. In this paper we report the discovery of new companions orbiting HD~181234, HD~13724, HD~25015, HD~92987 and HD~50499. We also report updated orbital parameters for HD~50499b, HD~92788b and HD~98649b. In addition, we confirm the recent detection of HD~92788c. The newly reported companions span a period range of 15.6 to 40.4 years and a mass domain of 2.93 to 26.77 $M_{mathrm{Jup}}$, the latter of which straddles the nominal boundary between planets and brown dwarfs. Conclusion. We have reported the detection of five new companions and updated parameters of four known extrasolar planets. We identify at least some of these companions to be promising candidates for imaging and further characterisation.
109 - D. Segransan , S. Udry , M. Mayor 2009
We report the detection of a double planetary system around HD 140718 as well as the discovery of two long period and massive planets orbiting HD 171238 and HD 204313. Those discoveries were made with the CORALIE Echelle spectrograph mounted on the 1 .2-m Euler Swiss telescope located at La Silla Observatory, Chile. The planetary system orbiting the nearby G9 dwarf HD 147018 is composed of an eccentric inner planet (e=0.47) with twice the mass of Jupiter (2.1 MJup ) and with an orbital period of 44.24 days. The outer planet is even more massive (6.6 MJup) with a slightly eccentric orbit (e=0.13) and a period of 1008 days. The planet orbiting HD 171238 has a minimum mass of 2.6 MJup, a period of 1523 days and an eccentricity of 0.40. It orbits a G8 dwarfs at 2.5 AU. The last planet, HD 204313 b, is a 4.0 MJup -planet with a period of 5.3 years and has a low eccentricity (e = 0.13). It orbits a G5 dwarfs at 3.1 AU. The three parent stars are metal rich, which further strengthened the case that massive planets tend to form around metal rich stars.
70 - M. Mayor 2003
This paper summarizes the information gathered for 16 still unpublished exoplanet candidates discovered with the CORALIE echelle spectrograph mounted on the Euler Swiss telescope at La Silla Observatory. Amongst these new candidates, 10 are typical e xtrasolar Jupiter-like planets on intermediate- or long-period (100<P<1350d) and fairly eccentric (0.2<e<0.5) orbits (HD19994, HD65216, HD92788, HD111232, HD114386, HD142415, HD147513, HD196050, HD216437, HD216770). Two of these stars are in binary systems. The next 3 candidates are shorter-period planets (HD6434, HD121504) with lower eccentricities among which a hot Jupiter (HD83443). More interesting cases are finally given by the multiple-planet systems HD82943 and HD169830. The former is a resonant P_2/P_1=2/1 system in which planet-planet interactions are influencing the system evolution. The latter is more hierarchically structured.
182 - N.C. Santos , M. Mayor , W. Benz 2009
We present the discovery of three new giant planets around three metal-deficient stars: HD5388b (1.96M_Jup), HD181720b (0.37M_Jup), and HD190984b (3.1M_Jup). All the planets have moderately eccentric orbits (ranging from 0.26 to 0.57) and long orbita l periods (from 777 to 4885 days). Two of the stars (HD181720 and HD190984) were part of a program searching for giant planets around a sample of ~100 moderately metal-poor stars, while HD5388 was part of the volume-limited sample of the HARPS GTO program. Our discoveries suggest that giant planets in long period orbits are not uncommon around moderately metal-poor stars.
269 - Li-Chin Yeh 2009
Using the period and mass data of two hundred and seventy-nine extrasolar planets, we have constructed a coupled period-mass function through the non-parametric approach. This analytic expression of the coupled period-mass function has been obtained for the first time in this field. Moreover, due to a moderate period-mass correlation, the shapes of mass/period functions vary as a function of period/mass. These results of mass and period functions give way to two important implications: (1) the deficit of massive close-in planets is confirmed, and (2) the more massive planets have larger ranges of possible semi-major axes. These interesting statistical results will provide important clues into the theories of planetary formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا