ﻻ يوجد ملخص باللغة العربية
We present the discovery of three new giant planets around three metal-deficient stars: HD5388b (1.96M_Jup), HD181720b (0.37M_Jup), and HD190984b (3.1M_Jup). All the planets have moderately eccentric orbits (ranging from 0.26 to 0.57) and long orbital periods (from 777 to 4885 days). Two of the stars (HD181720 and HD190984) were part of a program searching for giant planets around a sample of ~100 moderately metal-poor stars, while HD5388 was part of the volume-limited sample of the HARPS GTO program. Our discoveries suggest that giant planets in long period orbits are not uncommon around moderately metal-poor stars.
Fewer giants planets are found around M dwarfs than around more massive stars, and this dependence of planetary characteristics on the mass of the central star is an important observational diagnostic of planetary formation theories. In part to impro
Stellar metallicity -- as a probe of the metallicity of proto-planetary disks -- is an important ingredient for giant planet formation, likely through its effect on the timescales in which rocky/icy planet cores can form. Giant planets have been foun
We present an analysis of three years of precision radial velocity measurements of 160 metal-poor stars observed with HIRES on the Keck 1 telescope. We report on variability and long-term velocity trends for each star in our sample. We identify sever
Context. The presence of a small-mass planet (M$_p<$0.1,M$_{Jup}$) seems, to date, not to depend on metallicity, however, theoretical simulations have shown that stars with subsolar metallicities may be favoured for harbouring smaller planets. A larg
Planets are known to orbit giant stars, yet there is a shortage of planets orbiting within ~0.5 AU (P<100 days). First-ascent giants have not expanded enough to engulf such planets, but tidal forces can bring planets to the surface of the star far be