ﻻ يوجد ملخص باللغة العربية
We describe the Minimal Model Program in the family of $mathbb{Q}$-Gorenstein projective horospherical varieties, by studying a family of polytopes defined from the moment polytope of a Cartier divisor of the variety we begin with. In particular, we generalize the results on MMP in toric varieties due to M. Reid, and we complete the results on MMP in spherical varieties due to M. Brion in the case of horospherical varieties.
In a previous work, we described the Minimal Model Program in the family of $Qbb$-Gorenstein projective horospherical varieties, by studying certain continuous changes of moment polytopes of polarized horospherical varieties. Here, we summarize the r
The main results of this paper are already known (V.V. Shokurov, the non-vanishing theorem, 1985). Moreover, the non-$mathbb{Q}$-factorial MMP was more recently considered by O~Fujino, in the case of toric varieties (Equivariant completions of toric
We compute the Newton--Okounkov bodies of line bundles on the complete flag variety of GL_n for a geometric valuation coming from a flag of translated Schubert subvarieties. The Schubert subvarieties correspond to the terminal subwords in the decompo
For classical groups SL(n), SO(n) and Sp(2n), we define uniformly geometric valuations on the corresponding complete flag varieties. The valuation in every type comes from a natural coordinate system on the open Schubert cell and is combinatorially r
I construct a correspondence between the Schubert cycles on the variety of complete flags in C^n and some faces of the Gelfand-Zetlin polytope associated with the irreducible representation of SL_n(C) with a strictly dominant highest weight. The cons