ﻻ يوجد ملخص باللغة العربية
We have considered non-conformal fluid dynamics whose gravity dual is a certain Einstein dilaton system with Liouville type dilaton potential, characterized by an intrinsic parameter $eta$. We have discussed the Hawking-Page transition in this framework using hard-wall model and it turns out that the critical temperature of the Hawking-Page transition encapsulates a non-trivial dependence on $eta$. We also obtained transport coefficients such as AC conductivity, shear viscosity and diffusion constant in the hydrodynamic limit, which show non-trivial $eta$ dependent deviations from those in conformal fluids, although the ratio of the shear viscosity to entropy density is found to saturate the universal bound. Some of the retarded correlators are also computed in the high frequency limit for case study.
In the AdS$_3$/CFT$_2$ correspondence, we find some conformal field theory (CFT) states that have no bulk description by the Ba~nados geometry. We elaborate the constraints for a CFT state to be geometric, i.e., having a dual Ba~nados metric, by comp
Holographic mutual and tripartite information have been studied in a non-conformal background. We have investigated how these observables behave as the energy scale and number of degrees of freedom vary. We have found out that the effect of degrees o
In this work we will study the low-energy collective behavior of spatially anisotropic dense fluids in four spacetime dimensions. We will embed a massless flavor D7-brane probe in a generic geometry which has a metric possessing anisotropy in the spa
Gravity/fluid correspondence becomes an important tool to investigate the strongly correlated fluids. We carefully investigate the holographic fluids at the finite cutoff surface by considering different boundary conditions in the scenario of gravity
The loss of criticality in the form of weak first-order transitions or the end of the conformal window in gauge theories can be described as the merging of two fixed points that move to complex values of the couplings. When the complex fixed points a