ﻻ يوجد ملخص باللغة العربية
The current understanding of the spin evolution of young pulsars is reviewed through a compilation of braking index measurements. An immediate conclusion is that the spin evolution of all pulsars with a measured braking index is not purely caused by a constant magnetic dipole. The case of PSR J1734-3333 and its upward movement towards the magnetars is used as a guide to try to understand why pulsars evolve with n < 3. Evolution between different pulsar families, driven by the emergence of a hidden internal magnetic field, appears as one possible picture.
Spin evolution of X-ray pulsars in High Mass X-ray Binaries (HMXBs) is discussed under various assumptions about the geometry and physical parameters of the accretion flow. The torque applied to the neutron star from the accretion flow and equilibriu
We argue that comparison with observations of theoretical models for the velocity distribution of pulsars must be done directly with the observed quantities, i.e. parallax and the two components of proper motion. We develop a formalism to do so, and
Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable s
The Crab pulsar has suffered in 1975 and 1989 two glitches in which the frequency did not relaxed to the extrapolated pre-glitch value but rather spun up showing long-term changes in the frequency derivative dot Omega. This particular behaviour has b
An understanding of spin frequency ($ u$) evolution of neutron stars in the low-mass X-ray binary (LMXB) phase is essential to explain the observed $ u$-distribution of millisecond pulsars (MSPs), and to probe the stellar and binary physics, includin