ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin evolution of long-period X-ray pulsars

88   0   0.0 ( 0 )
 نشر من قبل Nazar Ikhsanov
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin evolution of X-ray pulsars in High Mass X-ray Binaries (HMXBs) is discussed under various assumptions about the geometry and physical parameters of the accretion flow. The torque applied to the neutron star from the accretion flow and equilibrium period of the pulsars are evaluated. We show that the observed spin evolution of the pulsars can be explained in terms of a scenario in which the neutron star accretes material from a magnetized stellar wind.

قيم البحث

اقرأ أيضاً

85 - F. Fuerst 2021
Ultra-luminous X-ray pulsars (ULXPs) provide a unique opportunity to study super-Eddington accretion. We present the results of a monitoring campaign of ULXP NGC 7793 P13. Over our four-year monitoring campaign with Swift, XMM-Newton, and NuSTAR, we measured a continuous spin-up with $dot P$ ~ -3.8e-11 s/s. The strength of the spin-up is independent of the observed X-ray flux, indicating that despite a drop in observed flux in 2019, accretion onto the source has continued at largely similar rates. The source entered an apparent off-state in early 2020, which might have resulted in a change in the accretion geometry as no pulsations were found in observations in July and August 2020. We used the long-term monitoring to update the orbital ephemeris and the periodicities seen in both the observed optical/UV and X-ray fluxes. We find that the optical/UV period is very stable over the years, with $P_text{UV}$ = 63.75 (+0.17, -0.12) d. The best-fit orbital period determined from our X-ray timing results is 64.86 +/- 0.19 d, which is almost a day longer than previously implied, and the X-ray flux period is 65.21+/- 0.15 d, which is slightly shorter than previously measured. The physical origin of these different flux periods is currently unknown. We study the hardness ratio to search for indications of spectral changes. We find that the hardness ratios at high energies are very stable and not directly correlated with the observed flux. At lower energies we observe a small hardening with increased flux, which might indicate increased obscuration through outflows at higher luminosities. We find that the pulsed fraction is significantly higher at low fluxes. This seems to imply that the accretion geometry already changed before the source entered the deep off-state. We discuss possible scenarios to explain this behavior, which is likely driven by a precessing accretion disk.
Context. About 120 Be/X-ray binaries (BeXBs) are known in the Small Magellanic Cloud (SMC); about half of them are pulsating with periods from a few to hundreds of seconds. SXP 1323 is one of the longest-period pulsars known in this galaxy. Aims. SXP 1323 is in the field of view of a large set of calibration observations that we analyse systematically, focusing on the time analysis, in search of periodic signals. Methods. We analyse all available X-ray observations of SXP 1323 from Suzaku, XMM-Newton, and Chandra, in the time range from 1999 to the end of 2016. We perform a Lomb-Scargle periodogram search in the band 2.5-10 keV on all observations to detect the neutron star spin period and constrain its long-term evolution. We also perform an orbital period search on the long-term light curve, merging all datasets. Results. We report the discovery of a 26.188+-0.045 d period analysing data from Suzaku, XMM-Newton, and Chandra, which confirms the optical period derived from the Optical Gravitational Lensing Experiment (OGLE) data. If this corresponds to the orbital period, this would be very short with respect to what is expected from the spin/orbital period relationship. We furthermore report on the spin period evolution in the last years. The source is spinning-up with an average rate of Pdot/P of 0.018 yr-1, decreasing from 1340 to 1100 s, in the period from 2006 to the end of 2016, which is also extreme with respect to the other Be/X-ray pulsars. From 2010 to the end of 2014, the pulse period is not clearly detectable, although the source was still bright. Conclusions. SXP 1323 is a peculiar BeXB due to its long pulse period, rapid spin-up for several years, and short orbital period. A continuous monitoring of the source in the next years is necessary to establish the long-term behaviour of the spin period.
We have revisited the problem of off-pulse emission in pulsars, where detailed search for the presence of low level radio emission outside the pulse window is carried out. The presence of off-pulse emission was earlier reported in two long period pul sars, PSR B0525+21 and B2046-16 at frequencies below 1 GHz using the Giant Meterwave Radio Telescope (GMRT). However, subsequent studies did not detect off-pulse emission from these pulsars at higher radio frequencies (> 1 GHz). We have carefully inspected the analysis scheme used in the earlier detections and found an anomaly with data editing routines used, which resulted in leakage of signal from the on-pulse to the off-pulse region. We show that the earlier detections from PSR B0525+21 and B2046-16 were a result of this leakage. The above analysis scheme has been modified and offline-gating has been used to search for off-pulse emission in 21 long period pulsars (P > 1.2 sec) at different observing frequencies of GMRT. The presence of low level off-pulse emission of peak flux 0.5 mJy was detected in the brightest pulsar in this list PSR 0B0628-28, with off-pulse to average pulsar flux ratio of 0.25%. We suggest that coherent radio emission resulting due to cyclotron resonance near the light cylinder can be a possible source for the off-pulse emission in this pulsar.
The current understanding of the spin evolution of young pulsars is reviewed through a compilation of braking index measurements. An immediate conclusion is that the spin evolution of all pulsars with a measured braking index is not purely caused by a constant magnetic dipole. The case of PSR J1734-3333 and its upward movement towards the magnetars is used as a guide to try to understand why pulsars evolve with n < 3. Evolution between different pulsar families, driven by the emergence of a hidden internal magnetic field, appears as one possible picture.
Accreting millisecond X-ray pulsars are known to provide a wealth of physical information during their successive states of outburst and quiescence. Based on the observed spin-up and spin-down rates of these objects it is possible, among other things , to infer the stellar magnetic field strength and test models of accretion disc flow. In this paper we consider the three accreting X-ray pulsars (XTE J1751-305, IGR J00291+5934, and SAX J1808.4-3658) with the best available timing data, and model their observed spin-up rates with the help of a collection of standard torque models that describe a magnetically-threaded accretion disc truncated at the magnetospheric radius. Whilst none of these models are able to explain the observational data, we find that the inclusion of the physically motivated phenomenological parameter $xi$, which controls the uncertainty in the location of the magnetospheric radius, leads to an enhanced disc-integrated accretion torque. These new torque models are compatible with the observed spin-up rates as well as the inferred magnetic fields of these objects provided that $xi approx 0.1-0.5$. Our results are supplemented with a discussion of the relevance of additional physics effects that include the presence of a multipolar magnetic field and general-relativistic gravity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا