ﻻ يوجد ملخص باللغة العربية
In the past years a good comprehension of the infrared gluon propagator has been achieved, with a good qualitative agreement between lattice results and Dyson-Schwinger equations. However, lattice simulations have been performed at physical volumes which are close to 20 fm but using a large lattice spacing. The interplay between volume effects and lattice spacing effects has not been investigated. Here we aim to fill this gap and address how the two effects change the gluon propagator in the infrared region. Furthermore, we provide infinite volume extrapolations which take into account the finite volume and finite lattice spacing. We also report on preliminary results for the gluon propagator at finite temperature.
The lattice Landau gauge gluon propagator at finite temperature is computed including the non-zero Matsubara frequencies. Furthermore, the Kallen-Lehmann representation is inverted and the corresponding spectral density evaluated using a Tikhonov reg
We study the Landau gauge quark propagator, at finite temperature, using quenched lattice simulations. Special focus is given to the behaviour of the momentum space form factors across the confinement-deconfinement phase transition.
For the gluon propagator of pure SU(2) lattice gauge theory in the Landau gauge we investigate the effect of Gribov copies and finite-volume effects. Concerning gauge fixing, we enlarge the accessible gauge orbits by adding non-periodic Z(2) gauge tr
The quark propagator at finite temperature is investigated using quenched gauge configurations. The propagator form factors are investigated for temperatures above and below the gluon deconfinement temperature $T_c$ and for the various Matsubara freq
We address the interpretation of the Landau gauge gluon propagator at finite temperature as a massive type bosonic propagator. Using pure gauge SU(3) lattice simulations at a fixed lattice volume $sim(6.5fm)^3$, we compute the electric and magnetic f