ﻻ يوجد ملخص باللغة العربية
For the gluon propagator of pure SU(2) lattice gauge theory in the Landau gauge we investigate the effect of Gribov copies and finite-volume effects. Concerning gauge fixing, we enlarge the accessible gauge orbits by adding non-periodic Z(2) gauge transformations and systematically employ the simulated annealing algorithm. Strategies to keep all Z(2) sectors under control within reasonable CPU time are discussed. We demonstrate that the finite-volume effects in the infrared regime become ameliorated. Reaching a physical volume of about (6.5 fm)^4, we find that the propagator, calculated with the indicated improvements, becomes flat in the region of smallest momenta. First signs in 4d of a final decrease towards vanishing momentum are discussed.
In the past years a good comprehension of the infrared gluon propagator has been achieved, with a good qualitative agreement between lattice results and Dyson-Schwinger equations. However, lattice simulations have been performed at physical volumes w
We address the interpretation of the Landau gauge gluon propagator at finite temperature as a massive type bosonic propagator. Using pure gauge SU(3) lattice simulations at a fixed lattice volume $sim(6.5fm)^3$, we compute the electric and magnetic f
The quark propagator at finite temperature is investigated using quenched gauge configurations. The propagator form factors are investigated for temperatures above and below the gluon deconfinement temperature $T_c$ and for the various Matsubara freq
By means of Numerical Stochastic Perturbation Theory (NSPT), we calculate the lattice gluon propagator up to three loops of perturbation theory in the limits of infinite volume and vanishing lattice spacing. Based on known anomalous dimensions and a
We report on results for the Landau gauge gluon propagator computed from large statistical ensembles and look at the compatibility of the results with the Gribov-Zwanziger tree level prediction for its refined and very refine