ﻻ يوجد ملخص باللغة العربية
Global dynamical behaviors of the competitive Lotka-Volterra system even in 3-dimension are not fully understood. The Lyapunov function can provide us such knowledge once it is constructed. In this paper, we construct explicitly the Lyapunov function in three examples of the competitive Lotka-Volterra system for the whole state space: (1) the general 2-dimensional case; (2) a 3-dimensional model; (3) the model of May-Leonard. The dynamics of these examples include bistable case and cyclical behavior. The first two examples are the generalized gradient system defined in the Appendixes, while the model of May-Leonard is not. Our method is helpful to understand the limit cycle problems in general 3-dimensional case.
We use dynamical generating functionals to study the stability and size of communities evolving in Lotka-Volterra systems with random interaction coefficients. The size of the eco-system is not set from the beginning. Instead, we start from a set of
We study the dynamics of predator-prey systems where prey are confined to a single region of space and where predators move randomly according to a power-law (Levy) dispersal kernel. Site fidelity, an important feature of animal behaviour, is incorpo
Animals live in groups to defend against predation and to obtain food. However, for some animals --- especially ones that spend long periods of time feeding --- there are costs if a group chooses to move on before their nutritional needs are satisfie
This work is concerned with the existence of entire solutions of the diffusive Lotka-Volterra competition system begin{equation}label{eq:abstract} begin{cases} u_{t}= u_{xx} + u(1-u-av), & qquad xinmathbb{R} cr v_{t}= d v_{xx}+ rv(1-v-bu), & qquad
This paper deals with coexistence and extinction of time periodic Volterra-Lotka type competing systems with nonlocal dispersal. Such issues have already been studied for time independent systems with nonlocal dispersal and time periodic systems with