ترغب بنشر مسار تعليمي؟ اضغط هنا

Accretion and outflow of gas in Markarian 509

107   0   0.0 ( 0 )
 نشر من قبل J. S. Kaastra
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A major uncertainty in models for photoionised outflows in AGN is the distance of the gas to the central black hole. We present the results of a massive multiwavelength monitoring campaign on the bright Seyfert 1 galaxy Mrk 509 to constrain the location of the outflow components dominating the soft X-ray band. Mrk 509 was monitored by XMM-Newton, Integral, Chandra, HST/COS and Swift in 2009. We have studied the response of the photoionised gas to the changes in the ionising flux produced by the central regions. We were able to put tight constraints on the variability of the absorbers from day to year time scales. This allowed us to develop a model for the time-dependent photoionisation in this source. We find that the more highly ionised gas producing most X-ray line opacity is at least 5 pc away from the core; upper limits to the distance of various absorbing components range between 20 pc up to a few kpc. The more lowly ionised gas producing most UV line opacity is at least 100 pc away from the nucleus. These results point to an origin of the dominant, slow (v<1000 km/s) outflow components in the NLR or torus-region of Mrk 509. We find that while the kinetic luminosity of the outflow is small, the mass carried away is likely larger than the 0.5 Solar mass per year accreting onto the black hole. We also determined the chemical composition of the outflow as well as valuable constraints on the different emission regions. We find for instance that the resolved component of the Fe-K line originates from a region 40-1000 gravitational radii from the black hole, and that the soft excess is produced by Comptonisation in a warm (0.2-1 keV), optically thick (tau~10-20) corona near the inner part of the disk.

قيم البحث

اقرأ أيضاً

86 - G. A. Kriss 2012
We observed Mrk 509 during the fall of 2009 during a multiwavelength campaign using XMM-Newton, Chandra, HST/COS, SWIFT, and Integral. The 600-ks XMM/RGS spectrum finds two kinematic components and a discrete distribution of ionized absorbers. Our hi gh S/N COS spectrum detects additional complexity in the known UV absorption troughs from a variety of sources in Mrk 509, including the outflow from the active nucleus, the ISM and halo of the host galaxy, and infalling clouds or stripped gas from a merger that are illuminated by the AGN. The UV absorption only partially covers the emission from the AGN nucleus with covering fractions lower than those previously seen with STIS, and are comparable to those seen with FUSE. Given the larger apertures of COS and FUSE compared to STIS, we favor scattered light from an extended region near the AGN as the explanation for the partial covering. As observed in prior X-ray and UV spectra, the UV absorption has velocities comparable to the X-ray absorption, but the bulk of the ultraviolet absorption is in a lower ionization state with lower total column density than the gas responsible for the X-ray absorption. Variability compared to prior UV spectra lets us set limits on the location, density, mass flux, and kinetic energy of the outflowing gas. For component 1 at $-400 rm km s^{-1}$, the kinetic energy flux of both the UV and the X-ray outflow is insufficient to have a significant impact on further evolution of the host galaxy.
We present observations of the UV absorption lines in the luminous Seyfert 1 galaxy Mrk 509, obtained with the medium resolution (lambda/Delta-lambda ~ 40,000) echelle gratings of the Space Telescope Imaging Spectrograph on the Hubble Space Telescope . The spectra reveal the presence of eight kinematic components of absorption in Ly-alpha, C IV, and N V, at radial velocities of -422, -328, -259, -62, -22, +34, +124, and +210 km s^-1 with respect to an emission-line redshift of z = 0.03440, seven of which were detected in an earlier Far Ultraviolet Spectrographic Explorer (FUSE) spectrum. The component at -22 km s^-1 also shows absorption by Si IV. The covering factor and velocity width of the Si IV lines were lower than those of the higher ionization lines for this component, which is evidence for two separate absorbers at this velocity. We have calculated photoionization models to match the UV column densities in each of these components. Using the predicted O VI column densities, we were able to match the O VI profiles observed in the FUSE spectrum. Based on our results, none of the UV absorbers can produce the X-ray absorption seen in simultaneous Chandra observations; therefore, there must be more highly ionized gas in the radial velocity ranges covered by the UV absorbers.
393 - M.Guainazzi 2012
We aim at constraining the geometry of the reprocessing matter in the nearby prototypical Seyfert 2 Galaxy Markarian 3 by studying the time evolution of spectral components associated to the primary AGN emission and to its Compton-scattering. We have analyzed archival spectroscopic observations of Markarian 3 taken over the last 12 years with the XMM-Newton, Suzaku and Swift observatories, as well as data taken during a monitoring campaign activated by us in 2012. The timescale of the Compton-reflection component variability (originally discovered by ASCA in the mid-90s) is ~64 days. This upper limit improves by more than a factor of 15 previous estimates of the Compton-reflection variability timescale for this source. When the light curve of the Compton-reflection continuum in the 4-5 keV band is correlated with the 15-150 keV Swift/BAT curve a delay ~1200 days is found. The cross-correlation results are dependent on the model used to fit the spectra, although the detection of the Compton-reflection component variability is independent of the range of models employed to fit the data. Reanalysis of an archival Chandra image of Markarian 3 indicates that the Compton-reflection and the Fe K-alpha emitting regions are extended to the North up to ~300 pc. The combination of these findings suggests that the optically-thick reprocessor in Markarian 3 is clumpy. There is mounting experimental evidence for the structure of the optically-thick gas and dust in the nuclear environment of nearby heavily obscured AGN to be extended and complex. We discuss possible modifications to the standard unification scenarios encompassing this complexity. Markarian 3, exhibiting X-ray absorption and reprocessing on widely different spatial scales, is an ideal laboratory to test these models (abridged).
The bright Seyfert 1 galaxy Mrk 509 was monitored by XMM-Newton and other satellites in 2009 to constrain the location of the outflow. We have studied the response of the photoionised gas to changes in the ionising flux produced by the central region s. We used the 5 discrete ionisation components A-E detected in the time-averaged spectrum taken with the RGS. Using the ratio of fluxed EPIC and RGS spectra, we put tight constraints on the variability of the absorbers. Monitoring with the Swift satellite started 6 weeks before the XMM-Newton observations, allowing to use the ionising flux history and to develop a model for the time-dependent photoionisation. Components A and B are too weak for variability studies, but the distance for component A is known from optical imaging of the [O III] line to be ~3 kpc. During the 5 weeks of the XMM-Newton observations we found no evidence of changes in the 3 X-ray dominant ionisation components C-E, despite a huge soft X-ray intensity increase of 60% in the middle of our campaign. This excludes high-density gas close to the black hole. Instead, using our time-dependent modelling, we find low density and derive firm lower limits to the distance of these components. Component D shows evidence for variability on longer time scales, yielding an upper limit to the distance. For component E we derive an upper limit to the distance based on the argument that the thickness of the absorbing layer must be less than its distance to the black hole. Combining these results, at the 90% confidence level, component C has a distance of >70 pc, component D between 5-33 pc, and component E >5 pc but smaller than 21-400 pc, depending upon modelling details. These results are consistent with the upper limits from the HST/COS observations of our campaign and point to an origin of the dominant, slow (v<1000 km/s) outflow components in the NLR or torus-region of Mrk 509.
Markarian 6 is a nearby (D~78 Mpc) Seyfert 1.5, early-type galaxy, with a double set of radio bubbles. The outer set spans ~7.5 kpc and is expanding into the halo regions of the host galaxy. We present an analysis of our new Chandra observation, toge ther with archival XMM-Newton data, to look for evidence of emission from shocked gas around the external radio bubbles, both from spatially resolved regions in Chandra and from spectral analysis of the XMM data. We also look for evidence of a variable absorbing column along our line of sight to Mrk 6, to explain the evident differences seen in the AGN spectra from the various, non-contemporaneous, observations. We find that the variable absorption hypothesis explains the differences between the Chandra and XMM spectra, with the Chandra spectrum being heavily absorbed. The intrinsic N_H varies from ~8x10^{21} atoms*cm^{-2} to ~3x10^{23} atoms*cm^{-2} on short timescales (2-6 years). The past evolution of the source suggests this is probably caused by a clump of gas close to the central AGN, passing in front of us at the moment of the observation. Shells of thermal X-ray emission are detected around the radio bubbles, with a temperature of ~0.9 keV. We estimate a temperature of ~0.2 keV for the external medium using luminosity constraints from our Chandra image. We analyse these results using the Rankine-Hugoniot shock jump conditions, and obtain a Mach number of ~3.9, compatible with a scenario in which the gas in the shells is inducing a strong shock in the surrounding ISM. This could be the third clear detection of strong shocks produced by a radio-powerful Seyfert galaxy. These results are compatible with previous findings on Centaurus A and NGC 3801, supporting a picture in which these AGN-driven outflows play an important role in the environment and evolution of the host galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا