ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing the UV and X-ray Outflow in Mrk 509

125   0   0.0 ( 0 )
 نشر من قبل Gerard A. Kriss
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. A. Kriss




اسأل ChatGPT حول البحث

We observed Mrk 509 during the fall of 2009 during a multiwavelength campaign using XMM-Newton, Chandra, HST/COS, SWIFT, and Integral. The 600-ks XMM/RGS spectrum finds two kinematic components and a discrete distribution of ionized absorbers. Our high S/N COS spectrum detects additional complexity in the known UV absorption troughs from a variety of sources in Mrk 509, including the outflow from the active nucleus, the ISM and halo of the host galaxy, and infalling clouds or stripped gas from a merger that are illuminated by the AGN. The UV absorption only partially covers the emission from the AGN nucleus with covering fractions lower than those previously seen with STIS, and are comparable to those seen with FUSE. Given the larger apertures of COS and FUSE compared to STIS, we favor scattered light from an extended region near the AGN as the explanation for the partial covering. As observed in prior X-ray and UV spectra, the UV absorption has velocities comparable to the X-ray absorption, but the bulk of the ultraviolet absorption is in a lower ionization state with lower total column density than the gas responsible for the X-ray absorption. Variability compared to prior UV spectra lets us set limits on the location, density, mass flux, and kinetic energy of the outflowing gas. For component 1 at $-400 rm km s^{-1}$, the kinetic energy flux of both the UV and the X-ray outflow is insufficient to have a significant impact on further evolution of the host galaxy.



قيم البحث

اقرأ أيضاً

We present the analysis of XMM-Newton and Swift optical-UV and X-ray observations of the Seyfert-1/QSO Mrk 509, part of an unprecedented multi-wavelength campaign, investigating the nuclear environment of this AGN. The XMM-Newton data are from a seri es of 10 observations of about 60 ks each, spaced from each other by about 4 days, taken in Oct-Nov 2009. During our campaign, Mrk 509 was also observed with Swift for a period of about 100 days, monitoring the behaviour of the source before and after the XMM-Newton observations. With these data we have established the continuum spectrum in the optical-UV and X-ray bands and investigated its variability on the timescale of our campaign with a resolution time of a few days. In order to measure and model the continuum as far as possible into the UV, we also made use of HST/COS observations of Mrk 509 (part of our coordinated campaign) and of an archival FUSE observation. We have found that in addition to an X-ray power-law, the spectrum displays soft X-ray excess emission below 2 keV, which interestingly varies in association with the thermal optical-UV emission from the accretion disc. The change in the X-ray power-law component flux (albeit smaller than that of the soft excess), on the other hand, is uncorrelated to the flux variability of the soft X-ray excess and the disc component on the probed timescale. The results of our simultaneous broad-band spectral and timing analysis suggest that, on a resolution time of a few days, the soft X-ray excess of Mrk 509 is produced by the Comptonisation of the thermal optical-UV photons from the accretion disc by a warm (0.2 keV) optically thick (tau ~ 17) corona surrounding the inner regions of the disc. This makes Mrk 509, with a black hole mass of about 1-3 x 10^8 solar masses, the highest mass known system to display such behaviour and origin for the soft X-ray excess.
The bright Seyfert 1 galaxy Mrk 509 was monitored by XMM-Newton and other satellites in 2009 to constrain the location of the outflow. We have studied the response of the photoionised gas to changes in the ionising flux produced by the central region s. We used the 5 discrete ionisation components A-E detected in the time-averaged spectrum taken with the RGS. Using the ratio of fluxed EPIC and RGS spectra, we put tight constraints on the variability of the absorbers. Monitoring with the Swift satellite started 6 weeks before the XMM-Newton observations, allowing to use the ionising flux history and to develop a model for the time-dependent photoionisation. Components A and B are too weak for variability studies, but the distance for component A is known from optical imaging of the [O III] line to be ~3 kpc. During the 5 weeks of the XMM-Newton observations we found no evidence of changes in the 3 X-ray dominant ionisation components C-E, despite a huge soft X-ray intensity increase of 60% in the middle of our campaign. This excludes high-density gas close to the black hole. Instead, using our time-dependent modelling, we find low density and derive firm lower limits to the distance of these components. Component D shows evidence for variability on longer time scales, yielding an upper limit to the distance. For component E we derive an upper limit to the distance based on the argument that the thickness of the absorbing layer must be less than its distance to the black hole. Combining these results, at the 90% confidence level, component C has a distance of >70 pc, component D between 5-33 pc, and component E >5 pc but smaller than 21-400 pc, depending upon modelling details. These results are consistent with the upper limits from the HST/COS observations of our campaign and point to an origin of the dominant, slow (v<1000 km/s) outflow components in the NLR or torus-region of Mrk 509.
189 - E. Costantini 2016
We model the broad emission lines present in the optical, UV and X-ray spectra of Mrk 509, a bright type 1 Seyfert galaxy. The broad lines were simultaneously observed during a large multiwavelength campaign, using the XMM-Newton-OM for the optical l ines, HST-COS for the UV lines and XMM-Newton-RGS and Epic for the X-ray lines respectively. We also used FUSE archival data for the broad lines observed in the far-ultra-violet. The goal is to find a physical connection among the lines measured at different wavelengths and determine the size and the distance from the central source of the emitting gas components. We used the Locally optimally emission Cloud (LOC) model which interprets the emissivity of the broad line region (BLR) as regulated by powerlaw distributions of both gas density and distances from the central source. We find that one LOC component cannot model all the lines simultaneously. In particular, we find that the X-ray and UV lines likely may originate in the more internal part of the AGN, at radii in the range ~5x10^{14}-3x10^{17} cm, while the optical lines and part of the UV lines may likely be originating further out, at radii ~3x10^{17}-3x^{18} cm. These two gas components are parametrized by a radial distribution of the luminosities with a slope gamma of ~1.15 and ~1.10, respectively, both of them covering at least 60% of the source. This simple parameterization points to a structured broad line region, with the higher ionized emission coming from closer in, while the emission of the low-ionization lines is more concentrated in the outskirts of the broad line region.
A major uncertainty in models for photoionised outflows in AGN is the distance of the gas to the central black hole. We present the results of a massive multiwavelength monitoring campaign on the bright Seyfert 1 galaxy Mrk 509 to constrain the locat ion of the outflow components dominating the soft X-ray band. Mrk 509 was monitored by XMM-Newton, Integral, Chandra, HST/COS and Swift in 2009. We have studied the response of the photoionised gas to the changes in the ionising flux produced by the central regions. We were able to put tight constraints on the variability of the absorbers from day to year time scales. This allowed us to develop a model for the time-dependent photoionisation in this source. We find that the more highly ionised gas producing most X-ray line opacity is at least 5 pc away from the core; upper limits to the distance of various absorbing components range between 20 pc up to a few kpc. The more lowly ionised gas producing most UV line opacity is at least 100 pc away from the nucleus. These results point to an origin of the dominant, slow (v<1000 km/s) outflow components in the NLR or torus-region of Mrk 509. We find that while the kinetic luminosity of the outflow is small, the mass carried away is likely larger than the 0.5 Solar mass per year accreting onto the black hole. We also determined the chemical composition of the outflow as well as valuable constraints on the different emission regions. We find for instance that the resolved component of the Fe-K line originates from a region 40-1000 gravitational radii from the black hole, and that the soft excess is produced by Comptonisation in a warm (0.2-1 keV), optically thick (tau~10-20) corona near the inner part of the disk.
96 - Nahum Arav 2004
We investigate the applicability of inhomogeneous absorber models in the formation of AGN outflow absorption-troughs. The models we explore are limited to monotonic gradients of absorbing column densities in front of a finite emission source. Our mai n finding is that simple power-law and gaussian distributions are hard pressed to fit the Mrk 279 high-quality UV outflow data. An acceptable fit for the O VI troughs can only be obtained by assuming unrealistic optical depth values (upward of 100). The strongest constraints arise from the attempt to fit the Lyman series troughs. In this case it is evident that even allowing for complete freedom of both the power-law exponent and the optical depth as a function of velocity cannot yield an acceptable fit. In contrast, partial covering models do yield good fits for the Lyman series troughs. We conclude that monotonic inhomogeneous absorber models that do not include a sharp edge in the optical depth distribution across the source are not an adequate physical model to explain the trough formation mechanism for the outflow observed in Mrk 279.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا