ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bourgain-Pisier construction for general Banach spaces

134   0   0.0 ( 0 )
 نشر من قبل Jordi Lopez-Abad
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف J. Lopez-Abad




اسأل ChatGPT حول البحث

We prove that every Banach space, not necessarily separable, can be isometrically embedded into a $mathcal L_{infty}$-space in a way that the corresponding quotient has the Radon-Nikodym and the Schur properties. As a consequence, we obtain $mathcal L_infty$ spaces of arbitrary large densities with the Schur and the Radon-Nikodym properties. This extents the a classical result by J. Bourgain and G. Pisier.



قيم البحث

اقرأ أيضاً

We develop a novel and unifying setting for phase retrieval problems that works in Banach spaces and for continuous frames and consider the questions of uniqueness and stability of the reconstruction from phaseless measurements. Our main result state s that also in this framework, the problem of phase retrieval is never uniformly stable in infinite dimensions. On the other hand, we show weak stability of the problem. This complements recent work [9], where it has been shown that phase retrieval is always unstable for the setting of discrete frames in Hilbert spaces. In particular, our result implies that the stability properties cannot be improved by oversampling the underlying discrete frame. We generalize the notion of complement property (CP) to the setting of continuous frames for Banach spaces (over $mathbb{K}=mathbb{R}$ or $mathbb{K}=mathbb{C}$) and verify that it is a necessary condition for uniqueness of the phase retrieval problem; when $mathbb{K}=mathbb{R}$ the CP is also sufficient for uniqueness. In our general setting, we also prove a conjecture posed by Bandeira et al. [5], which was originally formulated for finite-dimensional spaces: for the case $mathbb{K}=mathbb{C}$ the strong complement property (SCP) is a necessary condition for stability. To prove our main result, we show that the SCP can never hold for frames of infinite-dimensional Banach spaces.
399 - N. Lindemulder , E. Lorist 2021
We develop a discrete framework for the interpolation of Banach spaces, which contains e.g. the well-known real and complex interpolation methods, but also more exotic methods like the $pm$-method, the Radamacher interpolation method and the $ell^p$- interpolation method, as concrete examples. Our method is based on a sequential structure imposed on a Banach space, which allows us to deduce properties of interpolation methods from properties of sequential structures. Our framework has both a formulation modelled after the real and the complex interpolation methods. This allows us to extend results previously known for either the real or the complex interpolation method to all interpolation methods that fit into our framework. As applications of this observation we prove abstract Stein interpolation and the interpolation of intersections for all methods that fit into our framework.
We introduce the class of slicely countably determined Banach spaces which contains in particular all spaces with the RNP and all spaces without copies of $ell_1$. We present many examples and several properties of this class. We give some applicatio ns to Banach spaces with the Daugavet and the alternative Daugavet properties, lush spaces and Banach spaces with numerical index 1. In particular, we show that the dual of a real infinite-dimensional Banach with the alternative Daugavet property contains $ell_1$ and that operators which do not fix copies of $ell_1$ on a space with the alternative Daugavet property satisfy the alternative Daugavet equation.
We prove that every isometry between two combinatorial spaces is determined by a permutation of the canonical unit basis combined with a change of signs. As a consequence, we show that in the case of Schreier spaces, all the isometries are given by a change of signs of the elements of the basis. Our results hold for both the real and the complex cases.
Assume that $mathcal{I}$ is an ideal on $mathbb{N}$, and $sum_n x_n$ is a divergent series in a Banach space $X$. We study the Baire category, and the measure of the set $A(mathcal{I}):=left{t in {0,1}^{mathbb{N}} colon sum_n t(n)x_n textrm{ is } mat hcal{I}textrm{-convergent}right}$. In the category case, we assume that $mathcal{I}$ has the Baire property and $sum_n x_n$ is not unconditionally convergent, and we deduce that $A(mathcal{I})$ is meager. We also study the smallness of $A(mathcal{I})$ in the measure case when the Haar probability measure $lambda$ on ${0,1}^{mathbb{N}}$ is considered. If $mathcal{I}$ is analytic or coanalytic, and $sum_n x_n$ is $mathcal{I}$-divergent, then $lambda(A(mathcal{I}))=0$ which extends the theorem of Dindov{s}, v{S}alat and Toma. Generalizing one of their examples, we show that, for every ideal $mathcal{I}$ on $mathbb{N}$, with the property of long intervals, there is a divergent series of reals such that $lambda(A(Fin))=0$ and $lambda(A(mathcal{I}))=1$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا