ﻻ يوجد ملخص باللغة العربية
Cluster states are an essential component in one-way quantum computation protocols. We present two schemes to generate addressable continuous-variable cluster states from quadrature squeezed cylindrically polarized modes. By including polarization in addition to the transverse spatial degree of freedom, elementary cluster states can be created in which four cluster nodes co-propagate within one paraxial vector beam. This approach is fundamentally compatible with existing time-multiplexed schemes that have been used to create the largest cluster states to date. We implement a proof-of-principle experiment of one of the proposed schemes and verify its feasibility by measuring the quantum correlations between the different nodes of the cluster state.
We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quan
I present an extensible experimental design for optical continuous-variable cluster states of arbitrary size using four offline (vacuum) squeezers and six beamsplitters. This method has all the advantages of a temporal-mode encoding [Phys. Rev. Lett.
We demonstrate experimentally the simultaneous generation and detection of two types of continuous variable nonclassical states from one type-0 phase-matching optical parametric amplification (OPA) and subsequent two ring filter cavities (RFCs). The
Quadrature squeezed cylindrically polarized modes contain entanglement not only in the polarization and spatial electric field variables but also between these two degrees of freedom [1]. In this paper we present tools to generate and detect this ent
We present a proposal for storing and retrieving a continuous-variable quadripartite polarization-entangled cluster state, using macroscopic atomic ensembles in a magnetic field. The Larmor precession of the atomic spins leads to a symmetry between t