ترغب بنشر مسار تعليمي؟ اضغط هنا

Resource reduction for simultaneous generation of two types of continuous variable nonclassical states

78   0   0.0 ( 0 )
 نشر من قبل Long Tian
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate experimentally the simultaneous generation and detection of two types of continuous variable nonclassical states from one type-0 phase-matching optical parametric amplification (OPA) and subsequent two ring filter cavities (RFCs). The output field of the OPA includes the baseband {omega}0 and sideband modes {omega}0+/-n{omega}f subjects to the cavity resonance condition, which are separated by two cascaded RFCs. The first RFC resonates with half the pump wavelength {omega}0 and the transmitted baseband component is a squeezed state. The reflected fields of the first RFC, including the sideband modes {omega}0+/-{omega}f, are separated by the second RFC, construct Einstein-Podolsky-Rosen entangled state. All freedoms, including the filter cavities for sideband separation and relative phases for the measurements of these sidebands, are actively stabilized. The noise variance of squeezed states is 10.2 dB below the shot noise limit (SNL), the correlation variances of both quadrature amplitude-sum and quadrature phase-difference for the entanglement state are 10.0 dB below the corresponding SNL.



قيم البحث

اقرأ أيضاً

Continuous-variable (CV) cluster states are a universal resource for fault-tolerant quantum computation when supplemented with the Gottesman-Kitaev-Preskill (GKP) bosonic code. We generalize the recently introduced subsystem decomposition of a bosoni c code [Phys. Rev. Lett. 125, 040501 (2020)], and we use it to analyze CV cluster-state quantum computing with GKP states. Specifically, we decompose squeezed vacuum states and approximate GKP states to reveal their encoded logical information, and we decompose several gates crucial to CV cluster-state quantum computing. Then, we use the subsystem decomposition to quantify damage to the logical information in approximate GKP states teleported through noisy CV cluster states. Each of these studies uses the subsystem decomposition to circumvent complications arising from the full CV nature of the mode in order to focus on the encoded qubit information.
We study nonclassical correlations beyond entanglement in a family of two-mode non-Gaussian states which represent the continuous-variable counterpart of two-qubit Werner states. We evaluate quantum discord and other quantumness measures obtaining ex act analytical results in special instances, and upper and lower bounds in the general case. Non-Gaussian measurements such as photon counting are in general necessary to solve the optimization in the definition of quantum discord, whereas Gaussian measurements are strictly suboptimal for the considered states. The gap between Gaussian and optimal non-Gaussian conditional entropy is found to be proportional to a measure of non-Gaussianity in the regime of low squeezing, for a subclass of continuous-variable Werner states. We further study an example of a non-Gaussian state which is positive under partial transposition, and whose nonclassical correlations stay finite and small even for infinite squeezing. Our results pave the way to a systematic exploration of the interplay between nonclassicality and non-Gaussianity in continuous-variable systems, in order to gain a deeper understanding of -and to draw a bigger advantage from- these two important resources for quantum technology.
We present the first measurement of squeezed-state entanglement between the twin beams produced in an Optical Parametric Oscillator (OPO) operating above threshold. Besides the usual squeezing in the intensity difference between the twin beams, we ha ve measured squeezing in the sum of phase quadratures. Our scheme enables us to measure such phase anti-correlations between fields of different frequencies. In the present measurements, wavelengths differ by ~1 nm. Entanglement is demonstrated according to the Duan et al. criterion [Phys. Rev. Lett. 84, 2722 (2000)] $Delta^2hat{p}_- +Delta^2hat{q}_+=1.47(2)<2$. This experiment opens the way for new potential applications such as the transfer of quantum information between different parts of the electromagnetic spectrum.
Cluster states are an essential component in one-way quantum computation protocols. We present two schemes to generate addressable continuous-variable cluster states from quadrature squeezed cylindrically polarized modes. By including polarization in addition to the transverse spatial degree of freedom, elementary cluster states can be created in which four cluster nodes co-propagate within one paraxial vector beam. This approach is fundamentally compatible with existing time-multiplexed schemes that have been used to create the largest cluster states to date. We implement a proof-of-principle experiment of one of the proposed schemes and verify its feasibility by measuring the quantum correlations between the different nodes of the cluster state.
243 - Yunkai Wang , Kejie Fang 2020
Graph states are a unique resource for quantum information processing, such as measurement-based quantum computation. Here, we theoretically investigate using continuous-variable graph states for single-parameter quantum metrology, including both pha se and displacement sensing. We identified the optimal graph states for the two sensing modalities and showed that Heisenberg scaling of the accuracy for both phase and displacement sensing can be achieved with local homodyne measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا