ترغب بنشر مسار تعليمي؟ اضغط هنا

Black hole mass of central galaxies and cluster mass correlation in cosmological hydro-dynamical simulations

244   0   0.0 ( 0 )
 نشر من قبل Luigi Bassini
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, relations connecting the SMBH mass of central galaxies and global properties of the hosting cluster, such as temperature and mass, were observed. We investigate the correlation between SMBH mass and cluster mass and temperature, their establishment and evolution. We compare their scatter to that of the classical $M_{rm BH}-M_{rm BCG}$ relation. We study how gas accretion and BH-BH mergers contribute to SMBH growth across cosmic time. We employed 135 groups and clusters with a mass range $1.4times 10^{13}M_{odot}-2.5times 10^{15} M_{odot}$ extracted from a set of 29 zoom-in cosmological hydro-dynamical simulations where the baryonic physics is treated with various sub-grid models, including feedback by AGN. In our simulations we find that $M_{rm BH}$ correlates well with $M_{500}$ and $T_{500}$, with the scatter around these relations compatible within $2sigma$ with the scatter around $M_{rm BH}-M_{rm BCG}$ at $z=0$. The $M_{rm BH}-M_{500}$ relation evolves with time, becoming shallower at lower redshift as a direct consequence of hierarchical structure formation. On average, in our simulations the contribution of gas accretion to the total SMBH mass dominates for the majority of the cosmic time ($z>0.4$), while in the last 2 Gyr the BH-BH mergers become a larger contributor. During this last process, substructures hosting SMBHs are disrupted in the merger process with the BCG and the unbound stars enrich the diffuse stellar component rather than increase BCG mass. From the results obtained in our simulations with simple sub-grid models we conclude that the scatter around the $M_{rm BH}-T_{500}$ relation is comparable to the scatter around the $M_{rm BH}-M_{rm BCG}$ relation and that, given the observational difficulties related to the estimation of the BCG mass, clusters temperature and mass can be a useful proxy for the SMBHs mass, especially at high redshift.



قيم البحث

اقرأ أيضاً

We analyze the stellar growth of Brightest Cluster Galaxies (BCGs) produced by cosmological zoom-in hydrodynamical simulations of the formation of massive galaxy clusters. The evolution of the stellar mass content is studied considering different ape rtures, and tracking backwards either the main progenitor of the $z=0$ BCG or that of the cluster hosting the BCG at $z=0$. Both methods lead to similar results up to $z simeq 1.5$. The simulated BCGs masses at $z=0$ are in agreement with recent observations. In the redshift interval from $z=1$ to $z=0$ we find growth factors 1.3, 1.6 and 3.6 for stellar masses within 30kpc, 50kpc and 10% of $R_{500}$ respectively. The first two factors, and in general the mass evolution in this redshift range, are in agreement with most recent observations. The last larger factor is similar to the growth factor obtained by a semi-analytical model (SAM). Half of the star particles that end up in the inner 50 kpc was typically formed by redshift $sim$ 3.7, while the assembly of half of the BCGs stellar mass occurs on average at lower redshifts $sim 1.5$. This assembly redshift correlates with the mass attained by the cluster at high $z gtrsim 1.3$, due to the broader range of the progenitor clusters at high-$z$. The assembly redshift of BCGs decreases with increasing apertures. Our results are compatible with the {it inside-out} scenario. Simulated BCGs could lack intense enough star formation (SF) at high redshift, while possibly exhibit an excess of residual SF at low redshift.
344 - Hajime Inoue 2021
We investigate a mechanism for a super-massive black hole at the center of a galaxy to wander in the nucleus region. A situation is supposed in which the central black hole tends to move by the gravitational attractions from the nearby molecular clou ds in a nuclear bulge but is braked via the dynamical frictions by the ambient stars there. We estimate the approximate kinetic energy of the black hole in an equilibrium between the energy gain rate through the gravitational attractions and the energy loss rate through the dynamical frictions, in a nuclear bulge composed of a nuclear stellar disk and a nuclear stellar cluster as observed from our Galaxy. The wandering distance of the black hole in the gravitational potential of the nuclear bulge is evaluated to get as large as several 10 pc, when the black hole mass is relatively small. The distance, however, shrinks as the black hole mass increases and the equilibrium solution between the energy gain and loss disappears when the black hole mass exceeds an upper limit. As a result, we can expect the following scenario for the evolution of the black hole mass: When the black hole mass is smaller than the upper limit, mass accretion of the interstellar matter in the circum-nuclear region, causing the AGN activities, makes the black hole mass larger. However, when the mass gets to the upper limit, the black hole loses the balancing force against the dynamical friction and starts spiraling downward to the gravity center. From simple parameter scaling, the upper mass limit of the black hole is found to be proportional to the bulge mass and this could explain the observed correlation of the black hole mass with the bulge mass.
We present a discovery of the correlation between the X-ray spectral (photon) index and mass accretion rate observed in AGN NGC 4051. We analyzed spectral transition episodes observed in NGC 4051 using XMM/Newton, Suzaku and RXTE. We applied a scalin g technique for a black hole (BH) mass evaluation which uses a correlation between the photon index and normalization of the seed (disk) component, which is proportional to a mass accretion rate. We developed an analytical model that shows the spectral (photon) index of the BH emergent spectrum undergoes an evolution from lower to higher values depending on a mass accretion rate in the accretion disk. We considered Cygnus X-1 and GRO~J1550-564 as reference sources for which distances, inclination angles and the BH masses are evaluated by dynamical measurements. Application of the scaling technique for the photon index-mass accretion rate correlation provides an estimate of the black hole mass in NGC 4051 to be more than 6x10^5 solar masses.
115 - V. Avila-Reese 2011
(Abridged) By means of high-resolution cosmological simulations in the context of the LCDM scenario, the specific star formation rate (SSFR=SFR/Ms, Ms is the stellar mass)--Ms and stellar mass fraction (Fs=Ms/Mh, Mh is the halo mass)--Ms relations of low-mass galaxies (2.5< Mh/10^10 Msun <50 at redshift z=0) at different epochs are predicted. The Hydrodynamics ART code was used and some variations of the sub-grid parameters were explored. Most of simulated galaxies, specially those with the highest resolutions, have significant disk components and their structural and dynamical properties are in reasonable agreement with observations of sub-M* field galaxies. However, the SSFRs are 5-10 times smaller than the averages of several (compiled and homogenized here) observational determinations for field blue/star-forming galaxies at z<0.3 (at low masses, most of observed field galaxies are actually blue/star-forming). This inconsistency seems to remain even at z~1.5 though less drastic. The Fs of simulated galaxies increases with Mh as semi-empirical inferences show, but in absolute values the former are ~5-10 times larger than the latter at z=0; this difference increases probably to larger factors at z~1-1.5. The inconsistencies reported here imply that simulated low-mass galaxies (0.2<Ms/10^9 Msun <30 at z=0) assembled their stellar masses much earlier than observations suggest. This confirms the predictions previously found by means of LCDM-based models of disk galaxy formation and evolution for isolated low-mass galaxies (Firmani & Avila-Reese 2010), and highlight that our implementation of astrophysics into simulations and models are still lacking vital ingredients.
Supermassive black holes (BHs) residing in the brightest cluster galaxies are over-massive relative to the stellar bulge mass or central stellar velocity dispersion of their host galaxies. As BHs residing at the bottom of the galaxy clusters potentia l well may undergo physical processes that are driven by the large-scale characteristics of the galaxy clusters, it is possible that the growth of these BHs is (indirectly) governed by the properties of their host clusters. In this work, we explore the connection between the mass of BHs residing in the brightest group/cluster galaxies (BGGs/BCGs) and the virial temperature, and hence total gravitating mass, of galaxy groups/clusters. To this end, we investigate a sample of 17 BGGs/BCGs with dynamical BH mass measurements and utilize XMM-Newton X-ray observations to measure the virial temperatures and infer the $M_{rm 500}$ mass of the galaxy groups/clusters. We find that the $M_{rm BH} - kT$ relation is significantly tighter and exhibits smaller scatter than the $M_{rm BH} - M_{rm bulge}$ relations. The best-fitting power-law relations are $ log_{10} (M_{rm BH}/10^{9} rm{M_{odot}}) = 0.20 + 1.74 log_{10} (kT/1 rm{keV}) $ and $ log_{10} (M_{rm BH}/10^{9} rm{M_{odot}}) = -0.80 + 1.72 log_{10} (M_{rm bulge}/10^{11} M_{odot})$. Thus, the BH mass of BGGs/BCGs may be set by physical processes that are governed by the properties of the host galaxy group/cluster. These results are confronted with the Horizon-AGN simulation, which reproduces the observed relations well, albeit the simulated relations exhibit notably smaller scatter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا