ﻻ يوجد ملخص باللغة العربية
Dynamical fermionization refers to the phenomenon in Tonks-Girardeau (TG) gases where, upon release from harmonic confinement, the gass momentum density profile evolves asymptotically to that of an ideal Fermi gas in the initial trap. This phenomenon has been demonstrated theoretically in hardcore and anyonic TG gases, and recently experimentally observed in a strongly interacting Bose gas. We extend this study to a one dimensional (1D) spinor gas of arbitrary spin in the strongly interacting regime, and analytically prove that the total momentum distribution after the harmonic trap is turned off approaches that of a spinless ideal Fermi gas, while the asymptotic momentum distribution of each spin component takes the same shape of the initial real space density profile of that spin component. Our work demonstrates the rich physics arising from the interplay between the spin and the charge degrees of freedom in a spinor system.
We investigate the ground state density distributions of anti-ferromagnetic spin-1 Bose gases in one dimensional harmonic potential in the full interacting regimes. The ground state is obtained by diagonalizing the Hamiltonian in the Hilbert space co
We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann-Vlasov equation with contact interaction, we derive an effective 1D
One-dimensional polar gases in deep optical lattices present a severely constrained dynamics due to the interplay between dipolar interactions, energy conservation, and finite bandwidth. The appearance of dynamically-bound nearest-neighbor dimers enh
Although there is a broad consensus on the fact that critical behavior in stacked triangular Heisenberg antiferromagnets --an example of frustrated magnets with competing interactions-- is described by a Landau-Ginzburg-Wilson Hamiltonian with O(3)$t
We experimentally study the relaxation dynamics of a coherently split one-dimensional Bose gas using matterwave interference. Measuring the full probability distributions of interference contrast reveals the prethermalization of the system to a non-t