ﻻ يوجد ملخص باللغة العربية
A body of literature has developed concerning cloaking by anomalous localized resonance. The mathematical heart of the matter involves the behavior of a divergence-form elliptic equation in the plane, $ ablacdot (a(x) abla u(x)) = f(x)$. The complex-valued coefficient has a matrix-shell-core geometry, with real part equal to 1 in the matrix and the core, and -1 in the shell; one is interested in understanding the resonant behavior of the solution as the imaginary part of $a(x)$ decreases to zero (so that ellipticity is lost). Most analytical work in this area has relied on separation of variables, and has therefore been restricted to radial geometries. We introduce a new approach based on a pair of dual variational principles, and apply it to some non-radial examples. In our examples, as in the radial setting, the spatial location of the source $f$ plays a crucial role in determining whether or not resonance occurs.
We study the invisibility via anomalous localized resonance of a general source for electromagnetic waves in the setting of doubly complementary media. As a result, we show that cloaking is achieved if the power is blown up. We also reveal a critical
This is a survey of approximate cloaking using transformation optics for acoustic and electromagnetic waves.
A central ingredient of cloaking-by-mapping is the diffeomorphisn which transforms an annulus with a small hole into an annulus with a finite size hole, while being the identity on the outer boundary of the annulus. The resulting meta-material is ani
Quantum chromodynamics (QCD) is the theory of strong interaction and accounts for the internal structure of hadrons. Physicists introduced phe- nomenological models such as the M.I.T. bag model, the bag approximation and the soliton bag model to stud
We prove the existence of infinitely many non square-integrable stationary solutions for a family of massless Dirac equations in 2D. They appear as effective equations in two dimensional honeycomb structures. We give a direct existence proof thanks t