ﻻ يوجد ملخص باللغة العربية
The phase diagram and equation of state of dense nitrogen are of interest in understanding the fundamental physics and chemistry under extreme conditions, including planetary processes, and in discovering new materials. We predict several stable phases of nitrogen at multi-TPa pressures, including a P4/nbm structure consisting of partially charged N2 pairs and N5 tetrahedra, which is stable in the range 2.5-6.8 TPa. This is followed by a modulated layered structure between 6.8 and 12.6 TPa, which also exhibits a significant charge transfer. The P4/nbm metallic nitrogen salt and the modulated structure are stable at high pressures and temperatures, and they exhibit strongly ionic features and charge density distortions, which is unexpected in an element under such extreme conditions and could represent a new class of nitrogen materials. The P-T phase diagram of nitrogen at TPa pressures is investigated using quasiharmonic phonon calculations and ab initio molecular dynamics simulations.
We investigate the binary phase diagram of helium and iron using first-principles calculations. We find that helium, which is a noble gas and inert at ambient conditions, forms stable crystalline compounds with iron at terapascal pressures. A FeHe co
Being a lithophile element at ambient pressure, magnesium is long believed to be immiscible with iron. A recent study by Gao et al. [1] showed that pressure turns magnesium into a siderophile element and can produce unconventional Fe-Mg compounds. He
The energy landscape of helium-nitrogen mixtures is explored by ab initio evolutionary searches, which predicted several stable helium-nitrogen compounds in the pressure range from 25 to 100 GPa. In particular, the monoclinic structure of HeN$_{22}$
The appropriateness of including Hg among the transition metals has been debated for a long time. Although the synthesis of HgF$_{4}$ molecules in gas phase was reported before, the molecules show strong instabilities and dissociate. Therefore, the t
The complex structures and electronic properties of alkali metals and their alloys provide a natural laboratory for studying the interelectronic interactions of metals under compression. A recent theoretical study (J. Phys. Chem. Lett. 2019, 10, 3006